Blow-up of Solutions of Semilinear Parabolic Equations*

Zhana Kenona (Dept. of Math., Xiamen Univ., Fujian)

We study the existence of blow-up and the properties of set of blow-up points of solutions for some semilinear parabolic equations. We also discuss the single point blow-up of solution.

Introduction

We shall consider the following initial boundary value problem

$$u_t - u_{xx} = f(u, u_x, x, t), \qquad (x, t) \in (-a, a) \times (0, T)$$
 (1)

$$u(\pm a, t) = 0, \qquad t \in [0, T) \tag{2}$$

$$u(\pm a, t) = 0,$$
 $t \in [0, T)$ (2)
 $u(x, 0) = \phi(x),$ $x \in [-a, a]$ (3)

where f is a nonegative continuous differential function with respect to each variable, so is $\phi(x)$.

Recently there are many papers concerning the blow-up problem of the solutions to semilinear parabolic equations. For example [1]-[5]. In this paper, we shall discuss the blow-up problem for the more general form of equation.

The existence of blow-up

In this section, we consider the following initial boundary value problem for the special form of f.

$$u_t - u_{xx} = -(A(u))_x + B(u) + g(t), (x,t) \in (-a,a) \times (o,T)$$
 (4)

$$u(\pm a,t) = 0, t \in [0,T] (5)$$

$$u(x,0) = \phi(x), \qquad x \in [-a,a]$$
 (6)

where $\phi \in C^2$, $\phi(\pm a) = 0$, $\phi'' - (A(\phi))_x + B(\phi) > 0$, $\phi_r < 0 (r = |x|)$ and $A(u) \ge 0$, $A'(u) \ge 0$ $0, A''(u) \ge 0 \text{ for } u \ge 0 \text{ (for example, } A(u) = u^k, k \ge 2, B(u) = u^p, p > 2), g \in C, g(t) \ge 0.$

For sufficiently small T_0 , there is a unique solution to problem (4)-(6). When $t \leq T_0$, by the maximum principle, we have u>0 for all $(x,t)\in(-a,a)\times(0,T_0)$. If the global

^{*}Received June 4, 1991.

solution does not exist, there must exist a time T such that a positive solution exist when 0 < t < T, and u(x,t) tend to infinite when $t \to T$, namely

$$\lim_{t \to T} \sup_{x \in (-a,a)} u(x,t) = \infty. \tag{7}$$

Then we call the blow-up occurs to the solution u(x,t), and time T is called blow-up time of the solution. We give the definition of blow-up point as follows.

Definition A point $x \in (-a, a)$ is called a blow-up point if there exists a sequence (x_m, t_m) such that

$$t_m \to T, x_m \to x$$
 and $u(x_m, t_m) \to \infty$ if $m \to \infty$.

In the following, we shall discuss the conditions under which the blow-up of the solutions to problem (4)-(6) occurs.

Theorem 2.1 In problem (4)-(6), if $\phi(x) > M$ and M is sufficiently large. Then their solution blow-up in finite time.

Proof We consider another problem

$$v_t - v_{xx} = B(v) + g(t), (x,t) \in (-b,b) \times (0,T)$$
 (8)

$$v(\pm b,t) = 0, t \in [0,T) (9)$$

$$v(x,0) = M, x \in [-b,b], b < a (10)$$

if M is sufficiently large, then there exists a time T_0 at which v(x,t) blow-up, and we can prove from v(x,t) = v(-x,t) (see [4]) that

$$v_x < 0$$
 if $0 < x < b, 0 < t < T_0$.

Set

$$\max_{x \in (-b,b)} v(x,t) = v(0,t) = m(t), \tag{11}$$

$$r(x) = \int_0^t A'(m(\tau)) d\tau, r_0 = r(t_0). \tag{12}$$

When estimating the blow-up rate of their solutions (as in [1]), we have

$$\int_0^{T_0} v(0,t)\,dt < \infty.$$

As in [4], set

$$egin{aligned} \Omega_1 &= \{0 < x < b, 0 < t < T_0\}, \ \Omega_2 &= \{r(x) - r_0 < x < 0, 0 < t < T_0\}, \ \Omega_3 &= \{r(t) - r_0 - b < x < r(t) - r_0, 0 < t < T_0\} \end{aligned}$$

and introduce the function w(x,t) as follows

$$egin{aligned} w(x,t)&=v(x,t)\quad ext{in}\quad \Omega_1,\ w(x,t)&=m(t)\quad ext{in}\quad \Omega_2,\ w(x,t)&=v(x-r(t)+r_0,t)\quad ext{in}\quad \Omega_3. \end{aligned}$$

Then by the $v_x < 0$,

$$w_t - W_{xx} + (A(W))_x - B(W) - g(t) = A'(W)W_x = v_x A'(v) \le 0 \quad \text{in} \quad \Omega_1.$$
 (13)

Next, since $-v_{xx}(0,t) \geq 0$, thus

$$w_{t} - w_{xx} + (A(w))_{x} - B(w) - g(t)$$

$$= w_{t} - w_{xx} + w_{x}A'(w) - B(w) - g(t) \le m'(t) - B(m(t)) - g(t)$$

$$\le v_{t}(0, t) - v_{xx}(0, t) - B(v(0, t)) - g(t) = 0 \text{ in } \Omega_{2}.$$
(14)

Finally, we have

$$w_t - w_{xx} + (A(w))_x - B(w) - g(t) = v_t - v_x r'(t) - v_{xx} + v_x A'(v) - B(v) - g(t)$$

$$= v_x A'(v) - v_x r'(t) = v_x [A'(v) - A'(m(t))] \le 0 \text{ in } \Omega_3$$
(15)

Since $v_x \geq 0$, if x < 0.

Also, w and w_x are continuous across $\partial \Omega_1 \cup \partial \Omega_2$ and $\partial \Omega_2 \cup \partial \Omega_3$, and w is the lower solution to problem (4) in the interior of $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3$.

Since

$$w(x,0) = M > 0, \quad -b' < x < b, b' = b + r_0, \ w(x,t) = 0, \quad (x,t) \in \partial_p \Omega \setminus t = 0,$$

where $\partial_p \Omega$ is the parabolic boundary of Ω . Consequently, if $a > b', \phi(x) \geq M$, then $u(x,t) \geq w(x,t)$ when -b' < x < b, and v(x,t) blow-up at a finite time when M is sufficiently large, therefore w(x,t) blow-up too. As a result, u(x,t) blow-up at a finite time. That ends the proof. \square

Another sufficient condition for the occurrence of blow-up is given as follows.

Assume
$$\bar{x} \in (-a,a)$$
. Set $\rho = a - |\bar{x}|$, $B(\bar{x},\rho) = \{x : |x - \bar{x}| \leq \rho\} \subset (-a,a)$.

Theorem 2.2 For problems (4)-(6), if

$$\int_0^T g(t) dt = \infty, \tag{16}$$

then for their solutions u(x,t), we have

$$\lim_{t \to \bar{z}^-} u(x,t) = +\infty \quad \text{for all} \quad x \in B(\bar{x},\rho)$$
 (17)

and u(x,t) blow-up everywhere in (-a,a).

Proof Suppose $\bar{x} \in (-a, a)$, on the $B(\bar{x}, \rho)$, the solution v(x, t) to problem

$$egin{array}{lll} v_t - v_{xx} &=& B(v) + g(t), & (x,t) \in (-a,a) \times (0,T) \\ v(\pm a,t) &=& 0, & t \in [0,T) \\ v(x,0) &=& 0, & x \in [-a,a] \end{array}$$

is an upper solution for problem

$$\tilde{v_t} - \tilde{v_{xx}} = g(t), \quad (x,t) \in \{|x - \bar{x}| < \rho\} \times (0,T),$$
 (18)

$$\tilde{v}(x,t) = 0, \quad |x - \bar{x}| = \rho, t \in [0,T),$$
 (19)

$$\tilde{v}(x,0) = 0, \quad |x - \bar{x}| \le \rho. \tag{20}$$

Meanwhile, similar to Theorem 2.1(now M=0), we may prove v(x,t) is a lower solution for (4)-(6). In view of $\int_0^T g(t) dt = +\infty$, thus $\tilde{v}(\bar{x},t) \to +\infty$, as $t \to T^-$ (cf. [5], Th. 4.1). And since $v(x,t) \geq \tilde{v}(x,t)$ on $|x-\bar{x}| < \rho, t \in (0,T)$, hence $v(\bar{x},t) \to \infty$, as $t \to T^-$. But $\bar{x} \in (-a,a)$ is arbitrary, thus v(x,t) blow-up occurs everywhere, and so u(x,t) blow-up, too. \Box

3. Properties of blow-up set

We consider the properties of blow-up set of solutions to the following initial boundary problem

$$u_t - u_{xx} = f(u, u_x, x, t), \quad (x, t) \in (-a, a) \times (0, T)$$
 (21)

$$u(\pm a, t) = 0, t \in [0, T),$$
 (22)

$$u(x,0) = \phi(x), \qquad x \in [-a,a].$$
 (23)

Theorem 3.1 Consider (21)-(23). Suppose

- (1). $f(u, p, r, t) \in C^1$, $f \ge 0$, $f_1 \ge 0$, $f(0, 0, x, t) \ge 0$, here and later f_i denotes the partial derivative of f with respect to the ith variable.
- (2). There exists a positive function F(u), F'(u) > 0, F''(u) > 0 for $u \ge 0$. And F(0) = 0 if f(0,0,x,t) = 0, and assume $\int_{-\infty}^{\infty} \frac{du}{F(u)} < \infty$. If there exists $\varepsilon > 0$ small enough such that

$$f_1F - fF' \ge 2\varepsilon FF' + \varepsilon(a - \alpha_0)f_2FF',$$
 (24)

where $a - \alpha_0$ is properly small.

(3). $f_3 < 0$, if x > 0; $f_3 > 0$, if x < 0; $\phi_x < 0$, if x > 0; $\phi_x > 0$, if x < 0.

Then the blow-up set of u(x,t) is a compact subset of (-a,a).

Proof We shall prove that there exists a $\delta_0 > 0$, such that there is no blow-up point in $(-a, a) \setminus (-a + \delta, a - \delta_0)$. For this purpose, consider first x = a, set $\Omega_{\alpha}^+ = (\alpha, a), a - \alpha$ is sufficiently small, $\Omega_{\alpha}^- = (2\alpha - a, \alpha)$.

Define the function

$$W(x,t) = u(x,t) - u(2\alpha - x,t), x \in \Omega_{\alpha}^{-}, 0 < t < T.$$
 (25)

Then

$$w_{t} - w_{xx} = f(u, u_{x}, x, t) - f(u(2\alpha - x, t)u_{x}(2\alpha - x, t), 2\alpha - x, t)$$

$$= f(u(x, t), u_{x}(x, t), x, t) - f(u(2\alpha - x, t), u_{x}(x, t), x, t) + f(u(2\alpha - x, t), u_{x}(x, t), x, t)$$

$$- f(u(2\alpha - x, t), u_{x}(2\alpha - x, t), x, t) + f(u(2\alpha - x, t), u_{x}(2\alpha - x, t), x, t)$$

$$- f(u(2\alpha - x, t), u_{x}(2\alpha - x, t), 2\alpha - x, t)$$

$$f_{1}w + f_{2}w_{x} + f_{3}(2x - 2\alpha)$$

$$\stackrel{\triangle}{=} Cw + Dw_{x} + 2f_{3}(x - \alpha), \qquad (26)$$

where C and D are bounded functions for $x \in \Omega_{\alpha}^-$, 0 < t < T. Since $f_3 < 0$, if $x < \alpha$, we conclude that

$$w_t - w_{xx} - Cw - Dw_x > 0. (27)$$

Next, consider the values of w on the parabolic boundary of Ω_{α}^{-} .

$$w(\alpha,t) = u(\alpha,t) - u(2\alpha - \alpha,t) = 0,$$

 $w(2\alpha - a,t) = u(2\alpha - a,t) - u(a,t) = u(2\alpha - a,t) > 0,$
 $w(x,t) = u(x,0) - u(2\alpha - x,0) > 0.$

Thus, by the maximum principle, we have

$$w(x,t) > 0$$
, in $\Omega_{\alpha}^{-} \times (0,T)$. (28)

Since

$$w_x = 2\frac{\partial u}{\partial x} < 0, \quad \text{on} \quad \{x = \alpha\},$$
 (29)

and α is arbitrary, we conclude by varying the value of α that there exists α_0 , such that $\frac{\partial u}{\partial x} < 0$ when $(x,t) \in \Omega^+_{\alpha_0} \times (0,T)$. In order to complete the proof, we introduce a function

$$J = u_x + \varepsilon(x - \alpha_0) F(u) \quad \text{in} \quad \Omega_{\alpha_0}^+ \times (0, T). \tag{30}$$

Then we compute, using (21)

$$J_{t} - J_{xx} = \frac{\partial}{\partial x} (u_{t} - u_{xx}) + \varepsilon(x - \alpha_{0}) F'(u) (u_{t} - u_{xx}) - \varepsilon(x - \alpha_{0}) F''(u) u_{x}^{2} - 2\varepsilon F'(u) u_{x}$$

$$= f_{1} u_{x} + f_{2} u_{xx} + f_{3} + \varepsilon(x - \alpha_{0}) F' f - \varepsilon(x - \alpha_{0}) F'' u_{x}^{2} - 2\varepsilon F' u_{x}$$

$$= f_{1} [J - \varepsilon(x - \alpha_{0}) F] + f_{2} [J_{x} - \varepsilon F(u) - \varepsilon(x - \alpha_{0}) F' u_{x}] + f_{3}$$

$$+ \varepsilon(x - \alpha_{0}) F' f - \varepsilon(x - \alpha_{0}) F'' u_{x}^{2} - 2\varepsilon F' u_{x}$$

$$= [f_{1} - \varepsilon(x - \alpha_{0}) f_{2} F' - 2\varepsilon F'] J + f_{2} J_{x} + f_{3}$$

$$- \varepsilon(x - x_{0}) [F f_{1} - F' f - \varepsilon(x - \alpha_{0}) f_{2} F F' - 2\varepsilon F F']$$

$$- \varepsilon F f_{2} - \varepsilon(x - \alpha_{0}) F'' u_{x}^{2}.$$

$$(31)$$

Set $C = f_1 - \varepsilon(x - \alpha_0)F'f - 2\varepsilon F', D = f_2$. Then we have

$$J_t - J_{xx} - CJ - DJ_x = f_3 - \varepsilon(x - \alpha_0)[Ff_1 - F'f - 2\varepsilon FF' - \varepsilon(x - \alpha_0)f_2FF'] \leq 0,$$

where C and D are bounded functions. By the maximum principle, we conclude that J can not take positive maximum in $\Omega_{\alpha_0}^+ \times (0,T)$.

When ε is sufficiently small, we conclude that J(x,0) < 0 since $\phi_x < 0$ on $[\alpha_0, a) \times \{t = 0\}$. Next, we have $J(\alpha_0, t) < 0$ on $\{x = \alpha_0\} \times (0, T)$ from $u_x < 0$. It remains to show that J(a, t) < 0 on $\{x = a\} \times (0, T)$.

Consider the following initial boundary value problem

$$v_t - v_{xx} = 0, \quad (x, t) \in (-a, a) \times (0, T),$$
 (21)

$$v(\pm a, t) = 0, \quad t \in [0, T),$$
 (22)

$$v(x,0) = \varphi(x), \quad x \in [-a,a]. \tag{23}$$

Since $f(u, u_x, x, t) \geq 0$, hence $u(x, t) \geq v(x, t)$. Then we have

$$\frac{\partial u}{\partial x} \le \frac{\partial v}{\partial x} \le -c_0 < 0 \quad \text{on } \{x = a\} \times (0, T).$$
 (32)

Therefore, we have

$$J(a,t) = u_x(a,t) + \varepsilon(a - \alpha_0)F(0) < 0$$
 on $\{x = a\} \times (0,T)$

provided that ε is small enough.

Applying the maximum principle, we conclude that

$$J(x,t) \leq 0, \quad (x,t) \in \Omega_{\alpha_0}^+ \times (0,T).$$

Hence we have

$$-u_x = |u_x| \ge \varepsilon (x - \alpha_0) F(u). \tag{33}$$

Set

$$G(s) = \int_{s}^{\infty} \frac{ds}{F(s)}.$$
 (34)

For (33), integrating with respect to x from x_1 to x_2 . Where $\alpha_0 < x_1 < x_2 < a$, we get

$$-\int_{x_1}^{x_2} \frac{u_x}{F(u)} dx \ge \varepsilon \int_{x_1}^{x_2} (x - \alpha_0) dx \tag{35}$$

and we have from (34)

$$rac{\partial G(u)}{\partial x} = -rac{u_x}{F(u)}, \ \ rac{\partial G(u)}{\partial x} \geq arepsilon(x-lpha_0).$$

Hence

$$G(u(x_2,t)) - G(u(x_1,t)) \ge \frac{\varepsilon}{2}[(x_2 - \alpha_0)^2 - (x_1 - \alpha_0)^2].$$
 (36)

It follows that

$$G(u(x_2,t)) \ge \frac{\varepsilon}{2}[(x_2-\alpha_0)^2-(x_1-\alpha_0)^2] > 0.$$
 (37)

When $t \to T^-$, there must be $\limsup_{t \to T^-} u(x_2, t) < \infty$, otherwise if $\limsup_{t \to T^-} u(x_2, t) = \infty$, then we have

$$G(u(x_2,t)) \to 0$$
, as $t \to T^-$.

This contradicts (37). Thus

$$\limsup_{(x,t)\to(x_2,T^-)}u(x,t)<\infty, \quad \alpha_0< x_2< a.$$

This shows that every point x which satisfies $\alpha_0 < x < a$ is not blow-up point. Finally, the set of blow-up is a compact subset of (-a, a) because of the continuity of u(x, t), this completes the proof. \square

4. Single point blow-up problem

Consider the following IBVP

$$u_t - u_{xx} = f(u, u_x, x, t), \quad (x, t) \in (-a, a) \times (0, T),$$
 (38)

$$u(\pm a, t) = 0, \quad t \in [0, T),$$
 (39)

$$u(x,0) = \varphi(x), \quad x \in [-a,a], \tag{40}$$

where T is the blow-up time of the solution to problem (38)-(40). Suppose

- (I) $f \in C^1$, and $f(u, u_x, x, t) \ge 0$ for $u \ge 0$; f(0, 0, x, t) = 0; $f_1 > 0$; $f_3 < 0$, if x > 0; $f_3 > 0$, if x < 0, $f_4 > 0$.
- (II) $\varphi(\pm a) = 0, \varphi \ge 0, \varphi'' + f(\varphi, \varphi', x, 0) \ge 0.$
- (III) There exists a positive function F(u) such that

$$F'(u) \geq 0, F''(u) \geq 0, F(0) = 0$$
 for $u \geq 0$; and $\int_{-\infty}^{\infty} \frac{du}{F(u)} < \infty$,

and there exists $\delta > 0$ such that

$$f_1F - fF' \geq 2\delta FF' + \delta(x - x_1)f_2FF'.$$

Lemma 4.1 Suppose that (I)-(III) hold and $\varphi(x)$ satisfies

$$\begin{cases}
\varphi'(x) > 0, & \text{if } -a < x < 0, \\
\varphi'(x) < 0, & \text{if } 0 < x < a,
\end{cases}$$
(41)

then for the solution u(x,t) to the problem (38)-(40), there exist two curves $x = S^{\pm}(t), t \in (0,T)$ such that

$$u_x(x,t) > 0$$
, if $-a < x < S^-(t)$,
 $u_x(x,t) = 0$, if $S^-(t) \le x \le S^+(t)$,
 $u_x(x,t) < 0$, if $S^+(t) < x < a$.

Proof Differentiating (38) with respect to x, we have

$$u_{xt} - u_{xxx} = f_1 u_x + f_2 u_{xx} + f_3. (42)$$

Set $\Omega_T = (-a, \dot{a}) \times (0, T)$ and denote by Q^+ an element of the set $\{(x, t)|u_x(x, t) > 0\}$. We shall prove the parabolic boundary of Q^+ must intersect the parabolic boundary of Ω_T . Indeed otherwise we have $u_x = 0$ on the parabolic boundary of Q^+ . Hence, by the maximum principle for (42) we have $u_x \equiv 0$ in Q^+ and this contradicts the definition of Q^+ since the intersection of the set $\{(x,t)|u_x(x,t)>0\}$ with the parabolic boundary of Ω_T is a connected arc. Thus, $\{u_x>0\}$ has one element Q^+ in Ω_T .

Similarly, denote by Q^- the component of the set $\{u_x < 0\}$ and we can prove that Q^- is connected. Moreover, we can prove that for any $0 < \sigma < T$, $\{t = \sigma\}$ intersects Q^{\pm} in just one interval. Thus, there exists $x = s^-(t)$ which is one section of the boundary of Q^+ , and there exists $x = s^+(t)$ which is one section of the boundary of Q^- .

In the following, set

$$s^{-} = \liminf_{t \to T^{-}} s^{-}(t), \quad s^{+} = \limsup_{t \to T^{-}} s^{+}(t).$$
 (43)

Lemma 4.2 For the problem (38)-(40), if assumptions (I) and (II) hold, then a point $x \in (-a, a)$ is a blow-up point if and only if

$$s^- \leq x \leq s^+$$
.

Proof First we prove that if a point x is a blow-up point, then $x \in [s^-, s^+]$. Indeed, for any $\varepsilon > 0$, choose t_0 such that $T - t_0$ is sufficiently small, set $x_1 = s^+ + \varepsilon$, $R_{\varepsilon} = \{(x, t) | x \in (x_1, a), t \in (t_0, T)\}$, then $u_x < 0$ in R_{ε} . In a similar way to the proof of Theorem 3.1, set

$$J=u_x+\delta(x-x_1)F(u),$$

we can conclude that there is no blow-up point in $x_1 < x < a$, nor in $-a < x < x_0(x_0 = s^- - \varepsilon)$. This means that if x is a blow-up point then $x \in [s^-, s^+]$.

Below we shall prove that if $x \in [s^-, s^+]$, then x is a blow-up point. In fact, there exists sequences $t_m \to T$ such that $x \in [s^-(t_m), s^+(t_m)]$, namely, $u(x, t_m) = \max_{-a \le x \le a} u(x, t_m)$, hence $u(x, t_m) \to \infty$, when $m \to \infty$, that is, x is a blow-up point. \square

Theorem 4.3 If the above assumptions (I)-(III) hold, then there is only one blow-up point of the solutions to problem (38)-(40).

Proof By Lemma 4.1 and Lemma 4.2, we need only to show $s^+ = s^-$ is sufficiently small enough. Suppose $s^+ > s^-$ and let $0 < \varepsilon < \frac{s^+ - s^-}{2}$. Set $x_0 = s^- - \varepsilon$, then by Lemma 4.2, we have $u(x_0, t) \le c$. When $0 \le t < T$.

Now we choose $t_0 < T$ such that $T - t_0$ is sufficiently small and $s^+(t_0) > s^+ - \varepsilon$ and $u(x_1, t_0) > c$. Where $x_1 = s^+(t_0)$, then we have $u(x_1, t) > u(x_0, t)$ if $t_0 \le t < T$. Assume

 $\alpha = \frac{x_0 + x_1}{2}$. Without loss of generality, we can assume $\alpha < 0$. Set $R = \{(x, t) | x_0 < x < \alpha, t_0 < t < T\}$.

Consider function

$$w(x,t) = u(x,t) - u(2\alpha - x,t), \quad (x,t) \in R.$$
 (44)

Then w satisfies

$$w_t - w_{xx} = f(u(x,t), u_x(x,t), x, t) - f(u(2\alpha - x, t), u_x(2\alpha - x, t), 2\alpha - x, t)$$

= $f_1w + f_2w_x + f_3(2x - 2\alpha),$

namely,

$$w_t - w_{xx} - f_1 w - f_2 w_x = 2(x - \alpha) f_3 < 0. \tag{45}$$

Since $f_3 > 0$ in R.

On the parabolic boundary of R, we have

$$w(\alpha,t) = u(\alpha,t) - u(\alpha,t) = 0,$$

 $w(x_0,t) = u(x_0,t) - u(x_1,t) < 0,$
 $w(x,t_0) = u(x,t_0) - u(2\alpha - x,t_0) \le 0,$

since $u_x(x,t_0) \geq 0$ and $u_x(x,t_0) \not\equiv 0$, if $x \in (x_0,x_1)$.

By the maximum principle, we can conclude

$$u(x,t) < u(2\alpha - x,t)$$
 in R .

Hence for any $t \in (t_0, T)$, the maximum of u(x, t) for $x_0 \le x \le x_1$ cannot be attained for $x \in [x_0, \alpha)$. Thus we have $s^-(t) \ge \alpha$, when $t_0 < t < T$. Consequently, $s^- \ge \alpha$, namely

$$s^- \geq \alpha = \frac{x_0 + x_1}{2} = \frac{s^+(t_0) + s^- - \varepsilon}{2} > \frac{s^+ - \varepsilon + s^- - \varepsilon}{2} = \frac{s^+ + s^-}{2} - \varepsilon.$$

Therefore

$$\varepsilon > \frac{s^+ + s^-}{2} - s^- = \frac{s^+ - s^-}{2}.$$

This contradicts the above assumption. This shows $s^+ = s^-$. The proof is complete. \square

References

- [1] A. Friedman & B. Mcleod, Indiana Univ. Math. J., 34(2)(1985), 425-445.
- [2] L.A. Caffarrelli & A.Friedman, J. Math. Anal. Appl., 129(1988), 409-419.
- [3] C.Y. Chan, J. Diff. Equa., 77(1989), 304-321.
- [4] A. Friedman & A. Lacey, J. Math. Anal. Appl., 132(1988), 171-186.
- [5] J. Bebernes & A.Bressan, J. Diff. Equa., 73(1988), 30-44.

半线性抛物型方程解的爆破

张 克 农 (厦门大学数学系,361004)

摘要

在本文中我们研究了半线性抛物型方程解的 Blow-up 的存在性和 Blow-up 点集的性质,也讨论了单点 Blow-up 和有关 Blow-up 率问题.