Singulairty and Overconvergence of General Laguerre Series*

Mu Lehua
(Dept. of Math., Shandong Univ., Jinan)

By $L_n^{(\alpha)}(z)$ denote the general Laguerre polynomial [2, p.97]

$$\frac{1}{n!}e^{z}z^{-\alpha}\left(\frac{d}{dz}\right)^{n}\left(e^{-z}z^{n+\alpha}\right), \quad \alpha > -1$$

and by E_{τ} denote the parabola: $\text{Re}\sqrt{-z} = \tau$ $(\tau > 0)$, i.e., $z = -(\tau + iy)^2$, $-\infty < y < +\infty$. Hereafter $\sqrt{-z} > 0$ for z < 0.

For a general Laguerre series:

$$\sum_{n=0}^{\infty} a_n L_n^{(\alpha)}(z), \alpha > -1, \qquad (1)$$

it is well known that if

$$\tau = -\lim \sup (2n^{\frac{1}{2}})^{-1} \log |a_n|, 0 < \tau < +\infty, \tag{2}$$

then E_{τ} is its parabola of convergence [1, p.621-622].

1. Singularity

At first we give the following definition which play an important role in Theorem 1.

Definition Let $\sum_{n=0}^{\infty} t_n$ be a complex series. Suppose that there is a closed angular region D of opening $< \pi$ (i.e., $D: \beta_1 \leq Argz \leq \beta_2, \beta_2 - \beta_1 < \pi$) such that the sequence $\{T_n\}$ of its partial sums satisfies the following conditions:

(1)
$$T_n \to \infty, n \to \infty;$$
 (2) $T_n \in D, n \ge N,$

then the series $\sum_{n=0}^{\infty} t_n$ is said to be general properly divergent.

This definition is a generalization for the concept of classical properly divergent [3, p.215].

Theorem 1 Let E_1 be the parabola of convergence of the series (1). If the series (1) is general properly divergent at a point $z_0 \in E_1$, then this point z_0 is a singularity of the sum

^{*}Received May 27, 1991.

function f(z) of the series (1).

Proof Denote $S_n(z_0) = \sum_{k=0}^n a_k L_k^{(\alpha)}(z)$, $S_{-1}(z_0) = 0$, we have

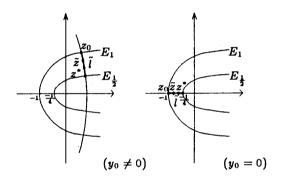
$$f(z) = \sum_{n=0}^{\infty} a_n L_n^{(\alpha)}(z) = \sum_{n=0}^{\infty} (S_n(z_0) - S_{n-1}(z_0) \frac{L_n^{(\alpha)}(z)}{L_n^{(\alpha)}(z_0)}, \quad z \in G_1,$$
 (3)

hereafter G_{τ} : $\text{Re}\sqrt{-z} < \tau$ and D_{τ} : $\text{Re}\sqrt{-z} > \tau$.

Let $z_0 = -(1+iy_0)^2 \in E_1$. Take another parabola $\tilde{l}: \zeta = -(t+iy_0)^2, \frac{1}{2} \leq t \leq 1$ through z_0 . Now we prove that when $z \in \tilde{l}, z \neq z_0$, the series

$$\sum_{n=0}^{\infty} S_n(z_0) \frac{L_n^{(\alpha)}(z)}{L_n^{(\alpha)}(z_0)} \tag{4}$$

is convergent.



Take $z^* = -(\mu^* + iy_0)^2$ and $\tilde{z} = -(\tilde{\mu} + iy_0)^2$, $\frac{1}{2} \le \mu^* < \tilde{\mu} < 1$. Since the series (1) is convergent at \tilde{z} , we have

$$|a_n L_n^{(\alpha)}(\tilde{z})| \le k. \tag{5}$$

Using the known asymptotic formula [2, p.193]

$$L_n^{(\alpha)}(z) = \frac{1}{2}\pi^{-\frac{1}{2}}e^{\frac{z}{2}}(-z)^{-\frac{\alpha}{2}-\frac{1}{4}}n^{\frac{\alpha}{2}-\frac{1}{4}}\exp\{2\sqrt{n}\sqrt{-z}\}\{1+O(\frac{1}{\sqrt{n}})\}, n > 0, z \in \bar{D}_{\frac{1}{2}}, \quad (6)$$

we can get when z lies in every bounded closed region inside of $\bar{D}_{\frac{1}{2}}$,

$$K_1 n^{\frac{\alpha}{2} - \frac{1}{4}} e^{2\sqrt{n} \operatorname{Re}\sqrt{-z}} \le |L_n^{(\alpha)}(z)| \le K_2 n^{\frac{\alpha}{2} - \frac{1}{4}} e^{2\sqrt{n} \operatorname{Re}\sqrt{-z}}, n \ge M, \tag{7}$$

specially, when $z \in \tilde{l}$, the formula (7) is also valid. Noticing that $\tilde{z}, z_0, z^* \in \tilde{l}$, from (5) and $\text{Re}\sqrt{-\tilde{z}} = \tilde{\mu}$ we get

$$|a_n| \le kn^{-\frac{\alpha}{2} + \frac{1}{4}} e^{-2\sqrt{n}\tilde{\mu}}, \quad n \ge M, \tag{8}$$

furthermore from (7) and $\text{Re}\sqrt{-z_0}=1, \text{Re}\sqrt{-z^*}=\mu^*$ we get

$$|S_n(z_0)| \leq k \sum_{k=M}^n e^{2\sqrt{k}(1-\tilde{\mu})} + \sum_{k=0}^{M-1} |a_k L_k^{(\alpha)}(z_0)| \leq k e^{2\sqrt{n}(1-\mu_1)}, \ \mu^* < \mu_1 < \tilde{\mu}, n \geq M' \geq M$$

and

$$|S_n(z_0)\frac{L_n^{(\alpha)}(z^*)}{L_n^{(\alpha)}(z_0)}| \leq ke^{2\sqrt{n}(\mu^*-\mu_1)}, \quad n \geq M',$$

so the series (4) is convergent at z^*

Hence by (3), we get when $z \in \tilde{l}, z \neq z_0$,

$$f(z) = \sum_{n=0}^{\infty} S_n(z_0) \left(\frac{L_n^{(\alpha)}(z)}{L_n^{(\alpha)}(z_0)} - \frac{L_{n+1}^{(\alpha)}(z)}{L_{n+1}^{(\alpha)}(z_0)} \right). \tag{9}$$

Write $S_n(z_0) = R_n e^{i\theta_n}$. Because the series $\sum_{n=0}^{\infty} a_n L_n^{(\alpha)}(z_0)$ is general properly divergent, for any given G > 0 there exists $\lambda, 0 < \epsilon_0 < \frac{\pi}{2}$ such that

$$R_n > G, \quad |\theta_n - \lambda| < \frac{\pi}{2} - \epsilon_0, \quad n \ge N_1.$$
 (10)

Again write $G_n(\mu) = \frac{L_n^{(\alpha)}(z)}{L_n^{(\alpha)}(z_0)} - \frac{L_{n+1}^{(\alpha)}(z)}{L_{n+1}^{(\alpha)}(z_0)}$, here

$$z = -(\mu + iy_0)^2, \frac{1}{2} \le \mu < 1.$$
 (11)

Applying the asymptotic formula (6), we know that $G_n(\mu) = A_n(\mu)B_n(\mu)$, where

$$A_n(\mu) = e^{\frac{1}{2}(1-\mu^2)} \left(e^{2\sqrt{n}(\mu-1)} - e^{2\sqrt{n+1}(\mu-1)} \right),$$

$$B_n(\mu) = e^{iy_0(1-\mu)} \left(\frac{\mu + iy_0}{1+iy_0} \right)^{-(\alpha+\frac{1}{2})} \left\{ 1 + O\left(\frac{1}{\sqrt{n}}\right) \right\}. \tag{12}$$

Noticing that $\lim_{\substack{n\to\infty\\\mu\to 1}}\operatorname{Re}\{B_n(\mu)\}=1$, $\lim_{\substack{n\to\infty\\\mu\to 1}}\operatorname{Im}\{B_n(\mu)\}=0$ and $A_n(\mu)>0$, we know that there exist μ_0 and $N\geq N_1$ such that

$$\frac{|\text{Im}\{G_n(\mu)\}|}{\text{Re}\{G_n(\mu)\}} < \frac{1}{4}\sin\epsilon_0, n \ge N, \frac{1}{2} \le \mu_0 < \mu < 1, \tag{13}$$

so by (9),

$$|f(-(\mu+iy)^{2})| = |\sum_{n=0}^{\infty} R_{n}e^{i(\theta_{n}-\lambda)}G_{n}(\mu)| \ge \sum_{N}^{\infty} R_{n} \operatorname{Re}\{e^{i(\theta_{n}-\lambda)}G_{n}(\mu)\} - \sum_{0}^{N-1} R_{n}|G_{n}(\mu)|,$$
(14)

however by (10) and (13),

$$\operatorname{Re}\left\{e^{i(\theta_{n}-\lambda)}G_{n}(\mu)\right\} = \cos(\theta_{n}-\lambda)\operatorname{Re}\left\{G_{n}(\mu)\right\} - \sin(\theta_{n}-\lambda)\operatorname{Im}\left\{G_{n}(\mu)\right\} > \frac{3}{4}\sin\epsilon_{0} \operatorname{Re}\left\{G_{n}(\mu)\right\}, n \geq N, \frac{1}{2} \leq \mu_{0} < \mu < 1,$$

so from (14) and $R_n > G$,

$$|f(-(\mu+iy_0)^2)| > rac{3}{4}G\sin\epsilon_0 \mathrm{Re}\{\sum_{N}^{\infty}G_n(\mu)\} - \sum_{0}^{N-1}R_n|G_n(\mu)|,$$

again by (11) and (6), we get $\lim_{\mu\to 1}\sum_{N}^{\infty}G_{n}(\mu)=1$, $\lim_{\mu\to 1}G_{n}(\mu)=0$, hence $\lim_{z\to z_{0}}f(z)=\infty$, so Theorem 1 is proved.

Example Consider a series $\sum_{1}^{\infty} a_n L_n^{(\alpha)}(z)$, where $a_n = n^{-\frac{\alpha}{2}} (1 + \frac{1}{n})^{-2n\sqrt{n}} e^{i(\frac{\pi}{4} - \frac{\pi}{8n})}$. By (2), its parabola of convergence is E_1 . By (7), $|S_n(-1)| \geq \text{Re}\{\sum_{1}^n a_k L_k^{(\alpha)}(-1)\} \geq k \cos \frac{\pi}{4} \sum_{1}^n k^{-\frac{1}{4}}$, so $S_n(-1) \to \infty$, $n \to \infty$. Write $S_n(-1) = R_n e^{i\theta_n}$. Clearly, $0 < \theta_1 = \frac{\pi}{8} < \frac{\pi}{4}$. If $0 < \theta_{n-1} < \frac{\pi}{4}$, noticing that

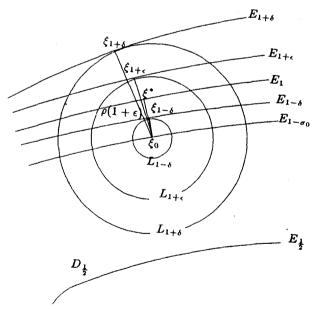
$$S_n(-1) = \{R_{n-1}\cos\theta_{n-1} + b_n\cos(\frac{\pi}{4} - \frac{\pi}{8n})\} + i\{R_{n-1}\sin\theta_{n-1} + b_n\sin(\frac{\pi}{4} - \frac{\pi}{8n})\},$$

where $b_n = n^{-\frac{\alpha}{2}} (1 + \frac{1}{n})^{-2n\sqrt{n}} L_n^{(\alpha)}(-1) > 0$. We get $\text{Re}\{S_n(-1)\} > \text{Im}\{S_n(-1)\} > 0$, so $0 < \theta_n < \frac{\pi}{4}$. Hence the series $\sum_{n=1}^{\infty} a_n L_n^{(\alpha)}(-1)$ is general properly divergent. By Theorem 1, the point z = -1 is a singularity.

2. Overconvergence

Theorem 2 Let the parabola of convergence of the series (1) be E_1 . If there are sequences of suffixes $p_k, q_k, (q_k \ge (1+\theta)p_k, \theta > 0)$ such that $a_n = 0$ $(p_k < n < q_k)$. Suppose that ξ^* is a regular point of sum function f(z) on E_1 . Then the sequence of partial sums $\{S_{p_k}(z)\}$ is convergent uniformly in a neighbourhood of ξ^* .

Proof Let $0 < \epsilon < \delta < \sigma_0$. We consider four parabolas: $E_{1-\sigma_0}$, $E_{1-\delta}$, $E_{1+\epsilon}$ and $E_{1+\delta}$.



The normal line of E_1 through ξ^* intersects $E_{1-\sigma_0}$ at ξ_0 . By $\rho(\tau)$ denote the distance from ξ_0 to E_{τ} , we draw three circles $L_{1-\delta}$, $L_{1+\epsilon}$, $L_{1+\delta}$ with contre ξ_0 and radii $\rho(1-\delta)$, $\rho(1+\epsilon)$, $\rho(1+\delta)$ respectively. Choose σ_0 so small that $L_{1+\delta} \subset D_{\frac{1}{2}}$, again choose δ so

small that f(z) is regular in and on $L_{1+\delta}$. Let

$$M_{S} = \max_{z \in L_{s}} |f(z) - S_{p_{k}}(z)|, S = 1 - \delta, 1 + \epsilon, 1 + \delta.$$
 (15)

Applying Hadamard's three-circles theorem,

$$M_{1+\delta}^{\log \frac{\rho(1+\delta)}{\rho(1-\delta)}} \le M_{1-\delta}^{\log \frac{\rho(1+\delta)}{\rho(1+\epsilon)}} \cdot M_{1+\delta}^{\log \frac{\rho(1+\epsilon)}{\rho(1-\delta)}}.$$
 (16)

Since $L_{1-\delta} \subset \tilde{G}_{1-\delta} \subset G_1$ and $a_n = 0$ $(p_k < n < q_k)$, we have $M_{1-\delta} = \max_{z \in L_{1-\delta}} |\sum_{q_k}^{\infty} a_n L_n^{(\alpha)}(z)|$. Taking $\tilde{\mu} = 1 - \eta$ $(0 < \eta < \frac{\delta}{2})$ in (8), we get from (7) and $\text{Re}\sqrt{-z} \le 1-\delta$, $M_{1-\delta} \le k \sum_{q_k}^{\infty} e^{2\sqrt{n}(\eta-\delta)} \le k e^{2(\eta-\delta+\epsilon'_k)\sqrt{q_k}}$, here $\epsilon'_k = \frac{\ln\sqrt{q_k}}{2\sqrt{q_k}} \to 0$ $(k \to \infty)$.

Choose k so large that $\eta - \delta + \epsilon'_k < 0$, we have from $q_k \ge (1 + \theta)p'_k$,

$$M_{1-\delta} \leq k e^{2(\eta-\delta+\epsilon'_k)(1+\theta)^{\frac{1}{2}}\sqrt{p_k}}.$$

On the other hand, from $L_0^{(\alpha)}(z) = 1$ [2, p.97] and $\text{Re}\sqrt{-z} \leq 1 + \delta$, we can get

$$M_{1+\delta} \leq \max_{z \in L_{1+\delta}} \{ |f(z)| + \sum_{0}^{M-1} a_k L_k^{(\alpha)}(z)| \} + \max_{z \in L_{1+\delta}} |\sum_{M}^{p_k} a_n L_n^{(\alpha)}(z)| \leq ke^{2(\eta + \delta + \epsilon_k^{\prime\prime})\sqrt{p_k}},$$

here $\epsilon_k'' = \frac{\ln \sqrt{p_k}}{2\sqrt{p_k}} \to 0 \ (k \to \infty)$ and M is stated as (8), so by (16) we get

$$M_{1+\epsilon}^{\log \frac{\rho(1+\delta)}{\rho(1-\delta)}} \le k\Omega_k^{\sqrt{p_k}},\tag{17}$$

where $\Omega_k = \exp\{2(\eta - \delta + \epsilon_k')(1+\theta)^{\frac{1}{2}}\log\frac{\rho(1+\delta)}{\rho(1+\epsilon)} + 2(\eta + \delta + \epsilon_k'')\log\frac{\rho(1+\epsilon)}{\rho(1-\delta)}\}$. Let $k \to \infty$. Then

$$\Omega_k \to \Omega = \exp\{2(\eta - \delta)(1 + \theta)^{\frac{1}{2}}\log\frac{\rho(1 + \delta)}{\rho(1 + \epsilon)} + 2(\eta + \delta)\log\frac{\rho(1 + \epsilon)}{\rho(1 - \delta)}\}. \tag{18}$$

Again let $\epsilon \to 0, \eta \to 0$. We get from (18),

$$\Omega \to \tilde{\Omega} = \exp\{-2\delta(1+\theta)^{\frac{1}{2}}\log\frac{\rho(1+\delta)}{\rho(1)} + 2\delta\log\frac{\rho(1)}{\rho(1-\delta)}\}. \tag{19}$$

Since $\rho(\tau)$ is a radical function of τ ,

$$\rho(1+\delta) = \rho(1) + \rho'(1)\delta + O(\delta^2), \ \rho(1-\delta) = \rho(1) - \rho'(1)\delta + O(\delta^2).$$

Furthermore $\log \frac{\rho(1+\delta)}{\rho(1)} = v\delta + O(\delta^2)$, $\log \frac{\rho(1)}{\rho(1-\delta)} = v\delta + O(\delta^2)$, where $v = \frac{\rho'(1)}{\rho(1)}$. Noticing that $\rho(r)$ is a strictly increasing function, we know that v > 0. From this and (19), we have $\tilde{\Omega} = \exp\{-2\delta(\sqrt{1+\theta}-1)(v\delta + O(\delta^2))\}$, so we can choose δ so small that $0 < \tilde{\Omega} < 1$. Again by (19), choose ϵ , η so small that $0 < \Omega < 1$, noticing that (18): $\Omega_k \to \Omega, k \to \infty$ and $\sqrt{p_k} \to +\infty, k \to \infty$, we obtain $\Omega_k^{p_k} \to 0, k \to \infty$. By (17) and (15), $\max_{z \in L_{1+\epsilon}} |f(z) - S_{p_k}(z)| \to 0, k \to \infty$. Applying the maximum modules principle, the sequence $\{S_{p_k}(z)\}$ is convergent uniformly in $|z - \xi_0| \le \rho(1+\epsilon)$, but $|\xi^* - \xi_0| = \rho(1) < \rho(1+\epsilon)$. Theorem 2 is proved.

References

- [1] O. Szász and N. Yeardley, The representation of an analytic function by general Laguerre series, Pacific J. of Math., 8(1958), 621-633.
- [2] G. Szegö, Orthogonal Polynomials, 1939.
- [3] E.C. Titchmarch, The Theory of Function, 1939.

广义 Laguerre 级数的奇点和过度收敛

木 乐 华 (山东大学数学系,济南 250100)

摘 要

本文在§1中推广了古典正规发散的概念,给出了广义 Laguerre 级数在收敛抛物线上的奇点的判断定理,在§2中给出了广义 Laguerre 级数的"Ostrowski"型的过度收敛定理.