Journal of Mathematical Research & Exposition
Vol.13, No.3, Aug. 1993

Singulairty and Overconvergence of General Laguerre
Series*

Mu Lehua
(Dept. of Math., Shandong Univ., Jinan)
By lea)(z) denote the general Laguerre polynomial [2, p.97]
1 d.,
;t—!ezz-a(a—;)"(e"zz"+a), a> -1
and by E, denote the parabola: Rey/—z =1 (7 > 0),ie., 2= —(r +1y)%, —00 < y < +00.

Hereafter v/—2 > 0 for 2z < 0.
For a general Laguerre series:

ZanL&a)(z)7a> -1, (1)
n=0
it is well known that if
T=— limsup(2n%)_llog|an|,0 <7 < +o0, (2)

then E; is its parabola of convergence [1, p.621-622].
1. Singularity

At first we give the following definition which play an important role in Theorem 1.

Definition Let) 22 t, be a complez series. Suppose that there is a closed angular region
D of opening <7 (ie., D: By < Argz < 3,82 — Py < 7 ) such that the sequence {T,}
of its partial sums satisfies the following conditions:

(1) Tn— o0,n— oo (2) T.e€D,n>N,

then the series 3 ;> o t, is said to be general properly divergent.
This definition is a generalization for the concept of classical properly divergent {3,
p-215].

Theorem 1 Let Ey be the parabola of convergence of the series (1). If the series (1) is
general properly divergent at a point zg € Ey, then this point zg 1s a singularity of the sum
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function f(z) of the series (1).
Proof Denote Sp(z0) = X0 akL(a (2), S-1(z0) =0, we have

L) ) -
f(z)—'gan (z)—}:(s (20) = Sua(en) sy = #€ O,

hereafter G, : Rey/~z < rand D,: Rey/-2>T7.
Let zp = —(1 + iyo)? € Ei. Take another parabola I : ¢ = —(t +iyo)%, 3 <t <1

through 29. Now we prove that when z € ] , 2 # 2z, the series

o (2)
Lo Ln'(2)
(4)
25 )
is convergent.
~ 0—- El
AL
(e
-1§ 4
(yo #0) (yo =0)

Take z* = -(p +1iyo)? and % = —(;4 +iw), i <p<B<L Since the series (1) is
convergent at Z, we have

lan L ()| < k. | (5)
Using the known asymptotic formula {2, p.193]
L@(z) = —7; “Sei(—2) 5 iniE expl2yavIN1 + 0(\/15)},n >0,2€D;, (6)

we can get when z lies in every bounded closed region inside of D),
2
Kln%_%ez‘/ﬁRe\/"_’ < |L(°‘)(z)| < Kgn%_%ez\/'_‘Re‘/__’,n > M, (M

spec1ally, when z € l the formula (7) is also valid. Noticing that Z, zp,2* € [, from (5)
and Rev—% = [i we get '

lan| < kn~$tie™ Wrk > M, (8)
furthermore from (7) and Rey/—zo = 1,Rey/—2* = u* we get

1Sn(20)| < k Z e2VE(1-8) 4 Z |akL( )(Zo)l < ke2VPO-B1) <oyl < fin > M’ >M
k=M k=0
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and

In(O) ()|<k2\/_(# m) n>M,

so the series (4) is convergent at z*
. Hence by (3), we get when z € l z# 2o,

-3 Li)(z) S.‘:Bl(z)) e
f(z) = "z;()sn( 0) (Laa)(zo) L£‘+1(Zo) . : (9)

Write Sn(zo) = Rne'’». Because the series E,,_o a,,L(a (20) is general properly divergent,
for any glven G > 0 there exists A,0 < ¢o < 7 such that

Rn>G, In—Al<§—€0, nZNl. (10)
L(a) ( ) (z)
Again write Gp(p) = —ﬁ—(—)- ( , here
n+l
.oy2 1 .
z=—(p+1yo) ,§§;A<~ 1. (11)

Applying the asymptotic formula (6), we know that G, (1) = An(r)Bn(g), where
An(p) = e%(l—u’)(ez\/ﬁ(,‘—l) - 2\/n+l(u—1)),

= ¢tvol W (BT IY0)(ard) —_
Bu(y) = e 0-A(E ) f1 1 o)} (12)

Noticing that lim..—.of Re{B,(u)} =1, hmn—wf Im{B,(z)} = 0 and A,(u) > 0, we know
that there exist m‘)‘ and N > Nj such that *

[Im{Gn(r)}|

1
<= smeo,n>N—-<\po<p<1 13
Re{Gn(n)} (13)

so by (9),

[£(=(n +iy)*)| = IZR NG (w)| 2 ZRn Re{e"*~ NG (n)} ~ Z RalGn(n)l;

n=0
(14)
however by (10) and (13),

Re{e'®»~2 G, (1)} = cos(8, — A)Re{Gn(p)} — sin(6p — A)Im{Gn(n)}
> %sineo Re{G.(p)},n > N,% <o < p<l,

so from (14) and R, > G,

. 00 N-1
(= (s +i50))| > 3G sin coRe(>_ Ga(W)} = 3 RalGn(u)]
N 0
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again by (11) and (6), we get lim, 1 13 Gn(p) = 1,lim,u1 Gn(s) = 0, hence lim.—, f(z) =
z€l
oc, 80 Theorem 1 is proved.

Example Consider a series ) {° aan.a)(z), where a, = n~3(1 + %)‘2"\/'_‘&(%'% .
By (2), its parabola of convergence is E;. By (7), |Sa(-1)] = Re{¥T akLﬁa)(—l)} >

kcos § 377 k™41, 50 Sp(—1) — 00,n — co. Write S,(=1) = Rné®». Clearly, 0 < 6; = § <
T-If0< 8,1 < %, noticing that :

T ) ) P S
Sn(—1) = {Rn—1co80,_1 + b, cos(z - E}Z)} +1{R,—1sinb,_1 + by, sm(z - -8—';)},

where b, = n”7 (1 + %)‘2"\/’—‘L$;a)(—-l) > 0. We get Re{Sn(~1)} > Im{Sp(-1)} > 0, s0
0 < 0, < %. Hence the series }_7° aan,a)(—l) is general properly divergent. By Theorem
1, the point z = —1 is a singularity.

2. Overconvergence

Theorem 2 Let the parabola of convergence of the series (1) be Ey. If there are sequences
of suffizes pi,qx,(qx > (1 + 0)pk,0 > 0) such that a,, =0 (pr < n < qx). Suppose that £
1s a regular point of sum function f(z) on E;. Then the sequence of partial sums {Sp,(z)}
is convergent uniformly in a neighbourhood of ¢*.

Proof Let 0 < e <8 < op. We consider four parabolas: E;_,,, Ey_s, E11¢ and Ej4s.

The normal line of E; through £ intersects E1_o, at &. By p(7) denote the distance
from & to E,, we draw three circles Lj_s, Lij¢, L14+s with contre & and radii p(1 —
8), {1+ €), p(1 + &) respectively. Choose gp-so small that Liys C D%, again choose § so
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small that f(2) is regular in and on L144. Let

Ms=£ré%§|f(z)—spk(z)|,5=1—5,1+e,1+5. (15)

Applying Hadamard’s three-circles theorem,
log% < MIOgﬁ'H% ]ogﬁ%))—. (16)
Since Ly_s € Gi—s € Gy and a, = 0 (pr < n < gqi), we have My_s =

maXzeL,_s | 2qp anLg.a)(z)]. Taking i = 1 -7 (0 < n < ) in (8), we get from (7) and

Rev/-z<1-6, My_s < kY00 eV (n=8) < ke(n—8+ )ik here ¢, = l_;_\/%g — 0 (k — o0).
Choose k so large that n — § + ¢}, < 0, we have from ¢, > (1 + 8)p,

My < ken—s+e)(1+0)} oz

On the other hand, from L(()a)(z) =1 [2, p.97] and Rey/—z < 1+ §, we can get

Myys < oax, {17(2)] + Z akL(")(z)l} + 8%, l}d anL(")(Z)I < kedln+s+el)VpE

here €} = l: p: — 0 (k— oo) and M is stated as (8), so by (16) we get

p(1+8)
M gf'“ - < kY, (17)
where Q; = exp{2(n —6+e’k)(1+9)§log%%1—2 +2(n+5+e',:)log‘;—8§%}. Let k — oo. Then
1 1+ 6) p(1+¢€)
2 — 0 = exp{2(n — 6)(1 + 6)log” +2(n + 6l : 18
k exp{2(n — 8)(1 + )=ogp(l+€)+ (n+ )ogp(1_5)} (18)
Again let ¢ — 0,7 — 0. We get from (18),
P( +6) P( )
Q — £ = exp{—26(1 + 6)2log"—"" + 26log 19

Since p(r) is a radical function of 7,
P1--8) =0 405 0[5, (4 - 8) =501 - ()5 + 0,

Furthermore loglu(“—L)'il = v§ + O(6%), Iog = v§ + O(6?), where v = %'((—1} Noticing
that p(7) is a strictly increasing function, we know that v > 0. From this and (19),we have
Q = exp{-26(v/1+0 — 1)(vé + 0(52))}, so we can choose § so small that 0 < Q < 1.
Again by (19), choose €, 7 so small that 0 < 2 < 1, noticing that (18): Q; — 0,k — oo
and |/px — +00, k — oo, we obtain {2}* — 0,k — co. By (17) and (15), max.ez,, . |f(2) -
Sp.(2)] — 0,k — oco. Applying the maximum modules principle, the sequence {S,,(z)} is
convergent uniformly in |z — &| < p(1 + €), but |£* — €| = p(1) < p(1 +¢€). Theorem 2 is
proved.
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