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Product Limit Estimators under the
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Abstract This paper considers estimation of the bivariate survival function under the
bivariate competing risks case. We give an iid representation for the PL estimator which
is iid mean zero process and the remainder term is of order O((n~! log n)3/4) a.s., weak
convergence of the process to a two-dimensional-time (Gaussian process is shown. Similar
results are obtained for the bootstrap version.

1. Introduction

Methods for analyzing bivariate censored data have been studied by many authers
over the last few decades. Relatively little research has been devoted to the analysis
of bivariate observations in the bivariate competing risks model. However, survival and
reliability studies often involve observations on paired individuals subject to censoring,
more generally, competing risks model [1,2]. Let (X,l?) be a pair of nonnegative ran-
dom vectors, where X = (X?,..-,X%) and ¥ = (¥?,---,Y2). The variables X? and
on,i =1,...,r;5 = 1,...,k are survival times or censored times, which are thought of
as competing risks. In the bivariate competing risks model, the complete collection of
random vectors ()?,17) is not possible. Instead, only the age at death given by (X,Y),
where X = min{X},---,X?},Y = min{Y?,---,Y?2} and the cause of death are observed.
One seeks to estimate the marginal survival probability.

In this paper we consider PL-type estimators of the marginal survival functions under
the bivariate competing risks case. It is shown that the bivariate PL-type estimator can
be written as a sum of mean zero iid processes and the remainder term is of the order
O((nlog n)3/4) a.s. uniformly on compact sets. Using the representation we establish
weak convergence and derive the corresponding results for the bootstrap estimators.
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2. Bivariate Competing Risks Model and Definition of Estimator

Let X?,---,X? and Y7, --- ,Y,S be competing risks of bivariate survival times respec-
tively. X = min{X?,---,X%},Y = min{Y?,---,Y2},R1 = {1,---,r}, Ry = {1, ,k}.
We assume that the elements of ) represent the subscript of risks in the X —system, and
the elements of R, represent the subscript of risks in the Y-system. Let ¢; denote the
collection of nonempty subsets of R;,1 =1,2.

For I; € p;, Let p, = {J; € i, inl; # 0} and @, = pi —p, ,1 = 1,2. Failure pattern
I, occurs in the X-system with life length X if {()-(:) is I;. Similarly, failure pattern I,
occurs in the Y- system with life length Y if 5(17) is I;. Where

(f()— L, if X=X} for each i € I, andX;ﬁX,Q for each 1 € I;
¢ ] 0, otherwise '

and
= I, fY = Y‘O foreachi1 € I and Y # Y|~° for each 1 & Iz,
§Y) =
@, otherwise

while X = (X{,-+-,X%) and ¥ = (Y?,---,Y?).

The complete collection of random variables X?,... , X% and Y, ..., Yko 1s not observed
under the bivariate competing risks case. Instead, only four quantities are observed: the bi-
variate age at death given by (X,Y), where X = min{X?,---, X?},Y = min{Y?,---,Y%}
and the bivariate cause of death, labeled (£(X),£&(Y)), given by I; € ¢; such that
¢(X) = I and I; € o such that ¢(Y) = I,. When death results from exactly a pair of the
r-k pairs of possible causes, as is usually assumed, then (£(X), £(Y)) is the index (3, ) for
which (X,Y) = (X?,on). The biomedical researchers are interested in making inferences
about unobservable quantities (viz., the random variables X¥,.--, X? and Y,---,Y?) by
using data from observable quantities—in this case, a pair of lifetimes (X,Y) and a pair
of causes of edath (£(X), £(Y)). In particular, they seek to estimate the marginal survival
function corresponding to a pair of given causes (or a pair of combination of causes) op-
erating alone without competition from the other causes. That is, they wish to estimate
the (2" — 1)(2* — 1) survival probabilities

51, 1(2,y) = P(Ueliln{X?} > x,l.gi]n{yjo} > y) = P(X1, > z,Yy, > y).
1Cl) Jeis

In analyzing competing risks data, we assume two of the following:

(A1) Let X7,...,X2 and Y?,...,YQ be two mutually independent sets of random
variables. The vectors {X?/i € I;} are independent of {Y/j € I} and {X}/i € I;} are
independent of {YJ-O/j € I} where [; = R; ~ I;,1 = 1,2.

(A2) The functions Sy, 1,(z,y) and Sy, 1,(z,y) are absolutely continuous with respect
to Lebesgue measure on RZ.

In the bivariate competing risks model, one observes a sample: (X;,Y;, £(X;), £(Y)), ¢ =
L,...,n, where X; = min{Xy;,---, X%}, Y; = min{Y,---, Y2},

(X)) = hi, if X; = X]} for each | € Iy; and X; # X for each | ¢ I
Y1, otherwise ’
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4

and

6(}—;) . { Iy, ifY; = Yz? for each | € I; and Y; # YI? for each | & Iy;

0, otherwise

Let H(z,y) = P(X > z,Y > y) denote the survival function of (X,Y’). By assumption
(A1),
H(z,y) = P(X>=zY >y)=P(X;, >z,X; >2,Y, >y,Y, > y)
= P(Xp, >z,Y > y)P(X,—1 > z,Yp > y)
= Si,n(z, 31)5'11,12 (z,9).

Based on the observations (X;,Y;, £(X;), £(Y:)) one would like to estimate Sy, 1,(z,y).
We shall estimate Sy, 1,(z, y) based on the fact that Sy, 1,(z,y) = S1,,1,(2,0)S1, 1.{y/x),
where Sy, 1,(y/z) = P(Y1, > y/X1, > ). Let

N(:c,y) = ZI(Xl > 22,)/,; > y):
i=1 A

ai(z>y)< = I(Xi Szy}/i >y,§()?;)€¢,l),i:1,...,n,
Bi(z,v) = I(X;>z,Y;<yéf)€p, ) i=1...,n
where I(-) is the indicator function. To estimate Sy, 1,(z,0), project all points (X;,Y;)

vertically onto the X-axis and ignore the Y; values. Let Sy, 1,(z,0) be the one-dimensional
PL-type estimator of Sy, 1,(z,0) based on (X;, £(X;)),7 =1,...,n. That is,

N(X()0) (=0 .
S fz < X,
511,12(1)0) = ,:1—[1 (W) S A(n) ’
0 otherwise

where X(;) denotes the i-th ordered value of {X1,..., Xn}, i =1,.

To estimate Sy, 1,(y/z), project all points (X,,Y) for whlch X > z horizontally to
the line X = z, and ignore the X; values. Let SIl I,(y/z) be the one-dimensional PL- -type
estimator of Sy, 1,(y/z) based on (Y;, £(Y;)), for which X; > z. That is,

n

N(zY(;) \Pilzv) i
5 z y< Y
Sn.1,(y/z) = 1:[ (N N(zY;)+1 ) Ol

otherwise

where Y{,,)(z) = max {Y; : X; > z} and Y,y denotes the j-th ordered value of {Y3,---,Y;},
(n) 1<i<n )

j=1,...,n
Our estimator of Sy, 1,(z,y) is

-§11,12($, y) = gh,lg(x;o)éh,]z(y/x)' (1)

For the bivariate case, we shall consider the bootstrap method (3] of drawing random
samples (with replacement) (X}, Y, &(X;),&(Y;*)) : 1 = 1,...,n from the population
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= {(Xi,Y:, €(X:), €(Y;)) : i = 1,...,n}, giving each element in (* equal chance (1/n)
at each draw. The bivariate PL-type estimator SIl 1,(Z,y) 1s then constructed as the

511,13(I7y ) but using the bootstrap sample {(Xx;,Y;7, £(X, ,E(Yl )):¢=1,...,n} instead
thus 5, ;. (<,y) = S}, 1,(2,0)8}, 1,(y/).

3. Asymptotic Representations

We shall adopt the notations of Section 2 for the bivariate competing risks model, and

define
H(y/z) =P >y/X > z)

Hi(y/z) =P >y, é(Y)€p, /X >q)
Hix(z,y) =P(X >z >y, §(X)€<P, ) (2)
Hiy(z,y) =P(X >z,Y >y, £Y) € 30,2)

Hy(z,y) =P(X >z2,Y >y, (X)E(p,l,f(f")égolz,).

For positive reals u,v, z,y, let
A(w, €(X),2) = —lg(u A z) + (H(4,0) (u < 2,6(X) € p,,)] (3)

where g(u) = J;'[H(z,0)]"2dH;x(z,0), and

Az (v, £(Y),9) = =gz (v A y) + (H(v/2) (v < 9, £(Y) € 0, )], (4)

where g,(v) = [J[H (y/u)]"*dH1(y/u). Let (S,T) be any point with H(S,T) > 0, let

n

m, = ZI(X,- > ), my= ZI(X: > ).

i=1 i=1

Lemma 1
() log Sy, 1,(y/z) —log Su,.1,(y/z) = m; Y A(Yi, E(V),9)I(X; > 2) + Ru(y/3),
i=1

where sup |R.(y/z)| = O((n " log n)?/*) a.s.
0<2<8,0<y<T

(6) 108 37,1, (u/2) ~logSn nly/z) = m's Y ALY €T WI(XT > )

— 4. (Y;, E(V2), ) I(X; > z)] + Ry(y/=),

where sup |R;(y/z)| = Op+((n"log n)3/4) a.s., and P* stands for the bootstrap
0<z<$,0<y<T _

probability.
The proof is tedious and similar to [4].

Theorem 1
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Its

(a) IOg 5'11,12 (.’E, y) - lOg Sll,lz(xa y) = n—l Z ﬂ(Xi; }/i) E(Xl)) E(Y—;)7 z, y) + Rn(za y))
i=1
where sup |Rn(z,y)] = O((n"'log n)*/%) a.s., and
0<z<8,0<y<T

f)(uw, E(Xt)) E(ﬁ))xx y) = A(u) 6()?)’2) + [H(x,O)]”lAz(v, E(?)’ y)I(u > :l:).

(b) ‘§11.I2(x7 y) - Sll,fz(z’y)

=071, (7, y) D n(X:, Vi, €(X:), €(V7), z,v) + Ri(z,y),
=1

where sup |R)(z,y)| = O((n 'log n)3/4) a.s.,
0<z<8,0<y<T

n

() SnnEy) - Stz y) = 0 Shn(z,y) S (XY, 6K, 697, 2.v)

1=1

_U(Xi) },i’ 6(‘?1)) E(}_/’l)) z, y)] + R:‘(I, y):

where sup |R;(z,y)] = Op ((n" ! log n)3/4) a.s.
0<z<8,0<y<T

Proof of (a) Theorem 1 of [5] and Lemma 1 imply that

log 5‘11,12(2:: y) — log Sh,lz (1:7 y)
= [log S1,,1,(=,0) — log S, ,1,(z,0)] + [log S1,,1,(y/ ) — log S1, 1, (y/ )]

=n"! i A(X;, £(X0), ©) + m ! iAz(Y;, E(¥:),9) (X > 2) + Rax(2,9)

1=1 X i=1
= n_l Z[f)(X,',Y,’, f(Xt)) E(Y},‘),Z, y) + Rnl(z') y) + RnZ(x, y),
=1

where  sup  |Rni(z,y)| = O((n"'logn)*/*) as., and
0<z<5,0<y<T

Ra(,9) = {n/ms — (H(z,0)]}n~ Y- A(V:, €07, ) I(X: > ).

=1 -

It is easy to see at this stage that, R,2(z,y) = O(n"!loglogn) a.s. for each (z,y). To
prove that it holds uniformly for 0 < z < §,0 < y < T, we shall apply the functional LIL
due to Theorem 4.1 of [6].

Let Z; = A.(Y:, €(Y:), v)I(X; > ), Z; takes values in D[0,S] x D[0,T] under the sup

norm || - || on [0,S] x [0,T], and S, = ) _ Z;, It is clear that E||Z1|®> < oo, and hence
J=1
condition (4.2) of [6] is satisfied. Condition (4.1) is satisfied due to the tightness of the
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process n~Y/2S,, which is shown in Theorem 2. It then follows from Theorem 4.1 of [6]
that ||S,./n]| = O((n"'loglog n)'/?) a.s. Also

sup In/mg — [H(z,0)] Y| = O((n"'loglog n)*/?) as.,

0<z<

from the LIL for empirical distribution and the fact that H(S,0) > 0. We have thus shown

that sup [Rnz2(z,y)| = O(n"tloglog n) a.s. Part (a) now follows from R, (z,y) =
0<z<S,0<y<T

Rﬂl(z) y) + an(za y)'

Proof of (b) Let Z; = n(Xg,K,E(Xi),f(ﬁ),x,y). It can be checked easily that Z; is
uniformly bounded on [0, S] x [0,T]. Applying Theorem 4.1 of [6] once again, we have

sup ln_l Z n(Xi71/i) s(x‘i)a 6(171)7 z, y)l = O((n—l log lOg n)1/2) a.s.
————— =1
(b) then follows from (a) and the two-term Taylor’s expansion of
5'11,]2(1, y) = Sn.5(z,y) = exp[log §11,12(17 y)| — expllog Sy, 1, (z, y)l.

Proof of (c) Using Theorem 1 of [5] and Lemma 1 (b), the proof follows by mimicking
the proofs of (a) and (b). ;
The next LIL follows from the proof of Theorem 1 by applying Theorem 4.1 of [6].

Corollary 1 Under the condition of Theorem 1,

(a) sup ]S’Il,jz(z,y) - S1,,.(z,y)| = O((n_1 log log n)l/z) a.s.,
0<z<S5,0<y<T
) sup 185 1a(2,9) ~ 1, 12(2,0)| = Op (v loglogm)!/%) a5

0<z<S,0<y<T

Let n(z,y) = n(X,Y,£(X),€(Y),z,y) and T((=z,y),(',¥')) =Cov(n(z,y),n(z',y")).
The mean and covariance structure of the process {n(z, y)} is given in the next proposition.

Proposition 1 (a) E(n(z,y)) =0, (b) Assume z < z'.
L((z,9),(=',¥) = —g(z) + L+ [H(z,0)]7 x {J§ H(v/z")[H(v/z)] *g(v A y')dH\(v/z)
— [Y[H(v/z)] Ygz(v A y')dH; (v/') - fo"’\”' [H(v/z)H(v/z')] 'dH(v/2')},

where

n = [1‘{(:15,0)]_1{/[;c o)x(00) g(u A z')gz(v A y)dH(u,v)
oo 9N H /2y ()
+ /[ ey 9500 A9/ H O ,0)

+ '/[’z,z')x[o,y][H(v/x)H(u’ 0)]‘ldH11 (u’ v)_
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The proof is tedious and similar to [5].

4. Weak Convergence

Let ni(z,y) = n(X.,Y;,6(X0), €(Va),z,9),  A(z,9) =n ‘Zn.(z ), ¢(z,v)

= 5n,5(2,9)1i(z,9), {(z,9) = S1,.1,(<,y)0(<, y), and ] (=, y) 7*(z,9), ¢ (2, ), (2, 9)
be their bootstrap counterparts.

Theorem 2 The processes {n/*7j(z,y)} and {n'/%[g*(z,y)—7i(z,y)]} both converge weakly
on D[0,S] x D[0,T] to a mean zero Gaussian process Z(z,y) with covariance structure

Cov(Z(z',y'), Z(z,y)) = T((=',¥'), (=, 9)).

Proof Let A(z) = (1/n) i A(X;,€(X:),z) and

W(z,y) = (1/n) 3 _[H(=,0)] ' A (¥;, £(Y3), v) (X > =),

so that 7(z,y) = A(z) + W(z,y). Let Hp(z,y) = (1/n) X, I(X; > z,Y; > y) and

Hin(z,y) = (1/n) 3 I(X: > ,Yi > y,€(Y)) € 9,
i=1

be the empirical survival function and subsurvival function. From (4), we have

W(z,y) = “*Z/ (z,v)dHy(z,v)
+ H™ (2, V) I(Y; < y,€(Vi) € o, )1 I(X; > )
v v
= ~/ H™%(z,v)Hy(z,v)dH;(z,v) +/ H™Y(z,v)dHy,(z,v)
0 0
v
= = [ H7(,0)[Hal2,9) - Hz, v)ldH1(z,v)
0
v
+ [ H @)l iz, v) - Hi(z,)
0
v
= = [ B, )Ha(2,9) - H(z, vldE(z,v)
0
+ [Hln(x: y) - Hl(x) y)]H—l(z’ y)
v
—/ [Hin(z,v) — Hi(z,v)]dH (z,v)
and this is just n=Y2[Az,(f) + Bzn(t)] on page 252 of 7], where t = (z,y).
Similary, one can show that A(z,y) = n™Y/2[A1,({) + Bln(f)] as defined on page 251 of
[7). The weak convergence of n!/?7j(z,y) now follows from the proof of Theorem 1 of [7].

The weak convergence of the bootstrap process n/?[5*(z,y) — 7j(z,y)] to a Gaussian pro-
cess follows from similar arguments as in Sections 3 and 4 of {7]. To show that it converges
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to the same Gaussian process Z(z,y) one only need to check that the finite dimensional
distribution nl/z[r/—* (zi,y:) — 7i(zi, %)), for some {(z;,%),1 < 1 < k}, converges to the k-
variate Gaussian distribution with mean zero and covariance matrix (I'((z;, i), (z;, y;)))-
This follows directly from the bootstrap central limit theorem for sample means [8]. The
theorem is thus completed.

Corollary 2 The processes n'/2(Sy, 1.(z,y) — S1,.1,(z,y)) and nl/Z(.SA';I'IQ(:c,y)f
S1,.1,(z,y)) both converge to the two-parameter Gaussian process with mean zero and co-
variance

SIL;IZ (.'II, y)Sh.Iz (xlﬁ y')F((x’ y)> (z') y'))'

We have thus shown that the bootstrap method works under the bivariate competing
risks model, which provides a way to estimate the standard error of Sy, 1,(z,y) or to
construct a confidence band for Sy, 1,(z,y). This is valuable since the covariance structure

of 5'1“12 (z,y) is very complicated as shown in Proposition 1.
The author wishes to express his gratitude to the referees and an Associate Editor for
their helpful comments.
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