Radicals of Group G-graded Γ -rings *

Guo Lingzhong Fan Fusheng
(Department of Automatic Control Department of Mathematics)
(Northeastern University, Shenyang)

Since Nobusawa [1] proposed the conception of Γ -ring in 1964, it has been extendly studied by many researchers. In this paper we shall try to research the grading of Γ -ring. A group G-graded Γ -ring is defined as follows:

Definition 1 Let M be a Γ -ring and G be a group. M is called a group G-graded Γ -ring, if there exist additive sub-groups $M_q, g \in G$, of M such that

$$M=\oplus_{g\in G}M_g$$

and

$$M_g\Gamma M_h\subseteq M_{gh}$$

for all $g, h \in G$.

Theorem 1 Let M be a group G-graded Γ -ring and R be its right operator ring. Then R must be group a G-graded ring.

Definition 2 Let M be a group G-graded Γ -ring. A graded ideal Q of M is called a graded prime ideal if $A\Gamma B \subseteq Q$ implies $A \subseteq Q$ or $B \subseteq Q$ for any graded ideals A, B of M. The graded prime radical of M is defined as the intersection of all graded prime ideals of M, denoted by $N_G(M)$.

Theorem 2 Let M be a group G-graded Γ -ring and R be its right operator ring. Then $N_G(M) = N_G(R)^*$, $N_G(R) = N_G(M)^{*'}$.

Definition 3 A graded Jacobson radical, denoted by $J_G(M)$, of a graded Γ -ring M is defined by $\cap A(S)$, where S runs over all graded irreducible $M\Gamma$ -modules and $J_G(M)=M$ if M has no any graded irreduible $M\Gamma$ -module.

Theorem 3 Let M be a group G-graded Γ -ring and R be its right operator ring. Then $J_G(M) = J_G(R)^*$.

Theorem 4 Let M be a group G-graded Γ -ring and R be its right operator ring. Then $J_G(M)^{*'} = J_G(R)$.

References

1 N.No usawa, On a generalization of ring theory, Osaka J. Math., 1(1964), 81-89.

^{*}Received Nov. 11, 1991.