References

(1] W. J.Vetter, Vector structures and solutions of linear matriz equation, Lincar Algebra Appl.,
10(1975), 181-188.

[2] J. R.Magnus and H.Neudecker, The elimination matriz: Some lemmas and applications, SIAM
J. Algebraic Discrete Methods, 1{1980}, 422-429.

(3] F. J.Henk Don, On the symmetric solutions of a linear matriz equation, Linear Algebra Appl,,
02(1087), 1-1.

{4] Hua Dai, On the symmetric solutions of linear malriz equaitons, Linear Algebra Appl,
131(1990), 1-7.

(5] Zhong Guo, Criterions of positive definiteness of matrices and solutions of inverse problem of
linear equation Az = b (Chinese), Kexue Tongbao (Chinese Science Bulletin), 2(1987), 95-98.

(6] Jiong-Sheng Li, A note on the positive definite real matrices, Applied Mathematics A Journal
of Chinese Universities, 3(1988), 346-353.

{7] Anping Liao, A class of inverse problems of matriz equation AX = B and its numerical
solution (Chinese), Mathematica Numerica Sinica, 12{1990), 108-112.

EEEHREEM— I EHEEFRRER DS

F oM Kk
(R PEKRBCE R, G 230026)

m ®

— AU (KRB xn EHEARIEIEEN WRMLEIREF N gL
bz, ¥ AT Mzt > 0. A F— A Rnx n JERE S E E R M RRE K 5
Gh, AT IC £ AR T B AX = B A B IR BB A 0F T 0 AR 6T R M8 K
MAICT MARMETE S W T X — TR SN LR SR UEANTRAR
) & A Xt S B # Bl Sk 1T AR

2

—_ O —_—

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Journal of Mathematical Research & Exposition
Vol.14, No.1, Feb. 1994

Positive Semidefinite Partitioned Matrices and a Linear
Matrix Equation and its Inverse Problem *

L1 Jiongsheng
(Dept. of Math., University of Science and Technology of China, Hefei)

Abstract A real (may not symmetric) nx n matrix M is said to be positive semidefinite
if, for any real nonzero n dimensional row vector =, zMz* > 0. In this paper, we give
a necessary and sufficient condition for determining whether a partitioned n X n matrix
i1s positive semidefinite. Moreover, we consider the solutions of linear matrix equation
AX = B with variant conditions on the solutions. The necessary and sufficient conditions
for the consistency of this equation are derived using the canonical form of a matrix
under the equivalence. The iverse problem of this equation with variant conditions on
the solutions is also included.

I. Introduction

Let R™*™ be the set of all real m x n matrices, S™>" the set of all real symietric
n X n matrices. And let R" denote the space of n dimensional real row vectors. Recall
that an n X n matrix M is said to be positive semidefinite (positive definite) if, for any
nonzero z €R™, zMz' > 0(> 0).

We consider the solutions of the linear matrix equation

AX = B, (1)

where A, B € R™*™. Many authors have studied the symmetric solutions of the equation
(1). The method of Vetter [1] and Magnus and Neudecker [2] is to use the symmetric
condition to reduce the dimension of the vector of unknowns from n? to %n(n + 1). Using
the partitioned minimum-norm reflexive generalized inverse, Don [3] derived the general
symmetric solutions of the equation (1). Dai (4] gave a necessary and sufficient condi-
tion for the consistency of the equation (1) with the symmetric solution and the general
symmetric solution of the equation (1) using the singular-value decomposition. Moreover,
Zhong Guo [5] and Jiong-Sheng Li [6] considered the positive dcfinite solutions of the
inverse problem of equation (1) with X, B € R™!. An-Pin Liao [7] discussed the positive

semidefinite symmetric solutions of the inverse problem of the equation (1) with X, B €
Rmxn.
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The purpose of this paper is to give the solutions of the equation (1) with variant
condition on the solutions using the canonical form of a matrix under equivaletce. For
this reason, we first derive a necessary and sufficient condition for determining whether a
partitioned n x n matrix is positive semidefinite (Section 2). Next, we study the solutions
of the equation (1) with variant condition on the solutions (Section 3). Finally, we consider
the inverse problem with various conditions on the matrix A of the equation (1).

2. Partitioned Positive Semidefinite Matrices

First we list some simple results without proofs.

Lemma 2.1 Let P € R™ " be non- singular. Then A € R™*" is positive semidefinite (or
positive definite) if and only if PAP' is, too. Particularly, S € S™ ™ is positive semidef-
inite if and only if PSP! is also.

Lemma 2.2 Every matriz A € R™ " has an unique decomposition into sum of a sym-
metric matriz S(A) € S™" and a skew symmetric matriz K(A) € R™", 1, A =
S(A) + K(A), where S(A) = %(A+ A') and K(A) = %(A — A%).

Lemma 2.3 The matriz A = S(A) + K(A) ER™™ s positive semidefinite (or positive
definite) if and only if S(A) is positive semidefinite (or positive definite).
Next, we prove the following

S Siz
Sfa S
inite if and only +f Sy s positive semidefinite, and Sy = S1,Y and Sy = Z +Y!S,Y,
where Z € SM—)x(n-s) 4 positive semidefinite and Y € R*X(n-3),

Theorem 2.4 Suppose Sy € S***. Then S = [ ] € S™*™ 45 positive semidef-

Proof Assume that S is positive semidefinite. Then S;; is also positive semidefinite.
Hence, there is a non-singular matrix P € R*** such that

_ I, O ¢
D

where I, € R™" is the identity matrix, and r =rank S;;. By Lemma 2.1, the symmetric

matrix ,
P 0 s P 0 _ PSPt PS;,
0 I._, 0 I._. o St, Pt Sa9

is positive semidefinite. Denote S!,P* = [St,,5%,], 81, € R™%("=9) § )3 € Rls-r)x(n=3),

Then -
Poolgfr ol | o s

0 I, S A R T

Siz Siz Sa

Since the above symmetric matrix is positive semidefinite, we have S13 = 0. Consequently,

PSy; = [ 55'2 ] = PSy, P'PSys,
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i.e., P(Slz - SnPtPSn) = 0. But Pis non-singular. So Slg = Su(PtPSu). Put
Y = P!PS;2. From Lemma 2.1, the symmetric matrix

t
I, -Y I, -Y .
[ 0 I, ] S { 0 I._, ] = diag(S11, S22 — Y'S11Y)

is positive semidefinite. Thus Z = Sy — Y!S,Y € S(n=s)x(n—s) ig positive semidefinite.
Conversely, since S1; and Z are positive semidefinite, we have by Lemma 2.1 that the

matrix
I, Y . I, Y _
[ 0o I, ]dlag(Su,Z) [ 0 I._. ] =S

is positive semidefinite.
This proves the theorem.

Sn Siz
Sty S
if and only if Sy, is positive definite, and there is a positive definite symmetric matriz Z €
S(n=2)x(n=9) sych that Soy = Z + SI,S5'S1a.

Corollary 2.5 For S1; € 8¢, the matriz S = [ € 8§°%¢ s positive definite

Proof Assume S is positive definite. Then Sy; i1s positive definite and non-singular.
Consequently,

[ I, —S;'Siz

t
S I, =SS
0 In—s

0 I,

] = dia.g(Su,ng - S{zsﬁlslz)

is positive definite. Thus, Z = Sy — Sf.le_llSm e Sn—9)x(n=s) jq positive definite. Con-
versely, since S} and Z = Sy — S},5],1S12 are positive definite, the matrix

[ I, SGlSi

I, Si*Si: | _
0 I, =5

t
diag(S“,Z) [ 0 I

is positive definite.
Now we give a characterization of the partitioned positive semidefinite matrices.

. : A A
Theorem 2.6 Let Ay € R™*®. Then the partitioned matriz A = A‘“ Alz € R™"
21 22
1s positive semidefinite if and only if A)y s positive semidefinite, and Ay = — Az +

(A1 + ALY and Ay = Z + YPALY, where Z € R™ ™ is positive semidefinite and Y €
Rsx(n—s).

Proof From Lemma 2.3, the matrix A is positive semidefinite if and only if S(A) is, too.
Note that

. Au +At11 A2+ An
| AL+ AYy A+ A,

25(A)

By Theorem 2.4, the symmetric matrix 25(A) is positive semidefinite if and only if Ay, +
Al is also positive semidefinite, and Ajz + A2; = (A11 + A%,)Y and Asp + ALy = W +
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Yi{(Ay + ALY, where W € S(n—#)x(n=3) ig positive semidefinite and Y € R**(n=#)_ By
11
Lemma 2.3, the symmetric matrix A; + A, is positive semidefinite if and only if Ay is,
’ 1118Pp
too, and the symmetric matrix W = Ay + A'zz -YYAn + Ail)Y is positive semidefinite
if and only if Ay3 — YA, Y =Z € R(n—2)x(n=2) 4g positive semidefinite.
The proof of Theorem 2.6 i1s completed.

An An
Atzl A').‘Z
positive difinite if and only if A11 1s positive definite and there exists o positive definite
matriz Z € R(n=2)x(n=2) sych that

Corollary 2.7 Suppose A1y € R***. Then the matriz A = € R™" 4s

Agz = Z + (A2 + An)* (A + AL) T An(An + A}) 7 (A + An).
Proof It is enough to take Y = (Aj2 + A21)(A11 + A%;) 7! in Theorem 2.6.

3. Solutions of the Equation (1)

First, we consider the solutions of the equation (1) with A, B € R™*". 1t is well-known
that, for A € R™*", there are non-singular matrices P € R™*" such that

I. 0
A:P[O O]Q, (2)

where r =rank A. The matrix in the right-hand side of (2) is said to be the canonical
form of A under equivalence. Clearly, the pair (P, Q) in (2) is fixed, not unique. To study
the solutions of the equation (1), we assume that the pair (P,Q) in (2) is fixed, and the
matrix B € R™*" has the following form:

_ Bn By 1yt
B—P[le BZZ](Q )1 (3)

where By, € R™*".
Now we prove the following

Theorem 3.1 Suppose that A and B have the forms (2) and (8) respectively. Then the
equation (1) has a solution if and only if By; = 0 and Bz = 0. In that case it has the
general solulion

1| B B -
x=o [ o 2 e @

where Xo1 € RUVTIXT and Xyy € RIF-1)X("=7) gre arbitrary.
Proof Suppose
X=qQ!

Xll X12 — 1\t
X1 Xz-z] Q)
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is a solution of the equation (1), where X;; € R™™". Then,

_ _ I, O a1 X Xie -1
B_AX_P[O O]QQ‘[X21 Xn](Q )

B X1 Xz | .-
— P[ 011 Ol](Q l)t’

t
By By —1yt
P
[321 3221 @)

l.e.,

B3y Ba: 0 0

Thus, X311 = By1, X12 = Biz, Bsy =0, and B;; = 0. This shows that X has form (4).

Conversely, suppose By = 0, and By = 0. Take a matrix X of type (4). It is easy to
verify that the matrix X of type (4) is a solution of the equation (1).

This proves the theorem.

To discuss further the solutions of the equation (1) with various conditions on the
solutions, we need the following lemma.

[Bu Bia ] :[Xn X12]

Lemma 3.2 Suppose P = [Py, P3],(P7!)! = [R}, R}, Q' = [Q%, Q%] and Q71 = [T}, T3),
where P, Rt € R™ " Py RL € R™(™=7) QY Ty € R™" and Q4, Ty € R™(*~"). Then,

PiRy+ PRy = I, (5)
RIPI = I")RIPZ = O)R'ZPI = O) R2P2 - I"l—") (6)
iy = L,Q1T2 =0,Q:T, =0,Q:Ty = I, (7
TlQl + T2Q2 = In; (8)
and

A = PlQla (9)

B = RyBQ)= RiBA'R! Bi» = Ri1BQ!,
By = R;BQ%, Bz = R, BQ}. (10)
Proof It is easy to see that (5) and (6) are the consequences of PP™! = [, and

P7'P = I, respectively, (7) and (8) are the corollaries of QQ~! = I,, and Q71Q = I,
respectively. From (2), we have (9). By (3), we obtain

B = PyBuT; + P2:BaT{ + PiBuTi + PoBaTs.

Conscquently, by (6) and (7), R;BQ} = Bi;,1 <i,5 < 2. Since A'R{ = Q{P{R} = Q}, we
obtain By = RIBQi = RlBAtRi.

Theorem 3.3 The equation (1) has a solution if and only if R B = 0. In that case it
has the general solution

X = Ty Ry BA'R{T} + Ty Ri BQLTS + Ty Xy T} + To X2 T3, (11)

— 29 —
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where Xa1 € R(F7)XT gnd Xpy € R(P-71X(0-7) gre arbitrary.

Proof From (10), we have R; B = [Bs1, B22|(Q~!)!. Thus, by Theorem 3.1, the equation
(1) has a solution if and only if R;B = 0. From (4) and Lemma 3.2, the general solution
of (1) is

X = TBuT} +T1BiTs + To XaTf + T2 X2 Ty
= TlRlBAtRin + TlRlBQ;th + T2X21T1‘ + T2X22T2‘.

This proves the theorem.
Next, we turn to the symmetric solutions of the equation (1) with A, B € R™>".

Theorem 3.4 The equation (1) has a symmetric solution if and only if R;B = 0 and
BA! is symmetric. In that case it has the general solution

B, B
X = (0! 11 12 -1 ¢’ 12
or
X = TyRiBA'R{T} + T1 R BQT} + T2Q2:B*RiT{ + T2 X2, T4, (13)

where Xqp € S(n1)%(n-7) 45 grbitrary.

Proof Suppose X is a symmetric solution of (1). Then, by Theorem 3.3, R; B = 0. Since
X is symmetric, the matrix BA* = AXA® is, too. In addition, by Theorem 3.1, X has
the form (4). But X is symmetric, so X3; = B}, and the matrix Xj; is also symmetric.
Consequently, X has the form (12). Finally, by Theorem 3.3, X has the form (11). Hence,

X' = iR AB RETY + TyQu B RIT + To X4, T4 + Ty X5, Tt
Because of BA' = AB! and X! = X, we have
Ti(RiBQ; — X3)T; - T2(Q2B' R} - Xun)Ty + Ta(Xez ~ X3,)T; = 0. (¥)

Using (7) and (10) on the equality Q2 X (1) x Qf, we obtain X2; = Q2 B*R;. Moreover, it
follows from (7) and @z x (i) x Q% that X!, = X32. Thus, X has the form (13).
Conversely, because of Ry B = 0, the equation (1) has a solution by Theorem 3.3, and
its general solution X has the form (4) or (11). Take X2; = Q2B'R!, and let X3; be a
symmetric (n — r) X {n — r) matrix. Since BA*’ is symmetric, the solution X is, too.
This proves the theorem.
Finally, we discuss the positive semidefinite solutions of the equation (1).

Theorem 3.5 The equation (1) has a positive semidefinite (not necessarily symmetric)
solution if and only if R; B = 0 and the matriz BA® 1s positive semidefinite. In that case
it has the general positive semidefinite soiution

By Bj2

— -1 —1\¢ 14
X=Q | _Bt,+v!(Bn+B,) Z+v'Byy |@ ) (14)
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or

X = (M + Y YRBAR(T + TyY') + T2 2Ty
+ (W Ry BQYT; — T2Q2 B R TY)
+ (TeY'RIAB'R{T} - TIRiBA'RL Y TY), (i5)

where Z 13 an arbitrary positive semidefinite (n —r) X (n—r) matriz and Y 1s an arbitrary
r X (n —r) matriz.

Proof Suppose X is a positive semidefinite solution of the equation (1). Then, by
Theorem 3.3, R; B = 0. Moreover, since the solution X is positive seinidefinite, the matrix
BA* = AXA! is, too. From Theorem 3.1, the solution X has the form (4). By, Lemma
Bn B
Xn Xz
that By is also positive semidefinite, and X;l =-Buiz+(Bn+ Bi])Y, Xy = Z+YBLY,
where Z € R(-r)x(n-r) is positive semidefinite and Y € R™("=7)_ Thus, the solution X
has the form (14). In addition, by Theorem 3.3, we have

2.1, the matrix [ ] 1s positive scinideflinite. Hence, we obtain from Theorem 2.6

X = TRBA'R{T{ + T\RiBQ4YTy + To X1 T} + Ty X227
Ty\RyBA'R{TY + Ty Ry BQLYT
+ To(= By + YH(Bu + BY)T) + T2(Z + Y BuY)Ts.

Forin Lemma 3.2, By, = R BA'R|, B\2 = R1BQ}. Consequently, we have

X = T\RBA'RT{ + T2Y'RiBA'R{T} + TY* RiAB'RT|
+ TaY Ry BA'R{T; + Ty Ri BQYTy — T2Q2 BRIT} + T2 Z T}
= (ThRi + TeY'R)BA'R{T{ + (T\ R, + T2Y'R))BA'RYY T

—~ T\ RyBA'RIY T + ToY RiAB RV T}

+ (T R’ BQYTS — 14Q: BRITH + T2 27T%.
Thus, the solution X has the form (15).

Converscly, suppose ;B = 0 and B.A* is positive semidefinite. Then, by Lemma 3.2,

and Lemma 2.1, Byy = Ry BA' K is positive semidefinite. From Theorem 2.6, the matrix

X of type (14) is positive semidcfinite. It is casy to verify that the matrix X of type (14)
is a solution of the equation (1). In addition, for the matrix X of type (15), we have

S(X) =Ty + ToY YRi BA'R\((Ty + ToY ') + T2 275

Since BA® and Z are positive semidefinite, the syinmetric matrix S{A) is also positive
semidefinite. Hence, the matrix X of type (15) 1s, too. It is easy to verify that the matrix
X of type (15) is a solution of the equation (1).

The proof of Theorem 3.5 is completed.

Corollary 3.6 The equation (1) has a positive definite (may not symmetric) solution
if and only if Ry B = 0 and the matriz BA" is positive definite. In that case the general
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positive definite solution X of (1) has the form (14) or (15) in which Z € R*-7)*(n=1) 45
positive definite.

T'roof It is a direct consequence of Theorem 3.5.

Corollary 3.7 The equation (1) has a positive semidefinite symmetric solution if and
only if RaB = 0 and the matriz BA! is posilive semidefinite symmetric. In that case
its general positive semidefinite symmetric solution has the form (12) or (13) in which
X = Z+Y'BlY or Xo20 = Z+ YRy BA‘R{,Z ts an arbitrary positive semidefinite
summetric (n —r) X (n — r) matriz, and Y 1is an arbitrary solution of the matriz equation
Biz = BnlY.

Proof Combinirg Theorem 3.4, 3.5 and 2.4, we obtain directly the resuit.

Corollary 3.8 The equation (1) has a positive definite symmetric solution if and only
if RyB = 0 and the matriz BA* is positive definite symmetric. In that case its general
positive definite symmetric solution X has the form (12) in which X2y = Z+ B}, B{! B12, 2
is an arbiirary positive definite symmetric (n — r) X (n — r) matnz.

FProof Obvious.
4. Inverse Problem of Equation (1)

In this section, we consider the solutions of various kinds of the inverse problem of
equation (1) with X, B € R*™*™ It is well known that, for X € R"*™, there are non-
singular matrices P € R™*™ and Q € R™*" such that

X:Qf[g g]P‘, (16)
where r =rankX. Moareover, we may denote
B, B!
B = (2—1 11 21 Pl, 17
B, B, (17)

where By, € R™",
Clearly, the inverse problem of the equation (1) with X, B € R"*™ and A € R™*" is
equivalent to solue the following equation

XAt = B, (18)

where A! is unknown. Consequently, for every theorem in Section 3 concerning the so-
lntions of the equation (1) with various conditions on the solutions, there is a duality
theorem on the inverse problem of the equation (1). We list the relevant results without
proofs as follows.

Theorem 4.1 The inverse problem of the equation (1) has a solution if and only if
B31 = 0 and Byy = 0. In that case it has the general solution
Bil X21] Q—l)t

_ -1
A=0 Bi, Xu

(19)
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where X3, € R} and Xgy € R(P-rIXin-r) gpe arbitrary.
From now on, we suppose that the senses of Py, P, Ry, Ry, Q1,Q2, Ty and Ts are the
same with Lemma 3.2. Then, we have

Theorem 4.2 The tnverse problem of the equalion (1) has a solution A € R™"™ if and
only if Ry Bt = 0, in which case it has the general solution

A= TlR,X‘BRin + T2QQBRiT1t + T1X21T2t + T-zXzszt, (20)
where Xg3 € R™("7) and X,y5 € RUIX01) gre arbitrary.

Theorem 4.3 The inverse problem of the equation (1] has a symmetric solution if and
only if RyB = 0 and the matriz X'B is symmetric. In that case it has the general
symmetric solution

1
_o-1| B B —1yt
a=ot| B @ 21
or
A= TlR]XtBRiT{ + TngBRiTlt + TlRlBtQtszt + T2X22T2t, (22)

where X33 s an arbitrary (n — r) X (n — r) symmetric matriz.

Theorem 4.4 The inverse problem of the equation (1) has a positive semidefinite solution
if and only of Ry B = 0 and the matriz X' B is positive semidefinite, in which case its
general positive semidefinite solution s the following

1| Bin —Bu+ (Bu + BY)Y

A= ) -1\t 1 3
@ B, Z+Y'BLY (@) (23)
or
A = (T +TYHYRX'BRYT, + TyYY) + 1,27
+ (T2Q: BRI — T\ Ry BQYTY)
+ (MR B'XRYTs — T2Y' Ry X BRITY), (24)

where Z is an arbitrary (n—r) x (n — r) positive semidefinite matriz and Y is an arbitrary
r X (n —r) matriz.

Theorem 4.5 The inverse problem of the equation (1) has a positive definite solution if
and only if RyB' = 0 and the matriz X' B 1is positive definite, in which case its general
positive definite solution A has the form (£3) or (24), where Xoo = Z + Y'B:Y and Z
s an arbitrary (n — r) x (n - r) positive definite matriz and Y is an atbitrary r x (n —r)
matraz.

Theorem 4.6 The inverse problem of ihe equation (1) has a positive semidefinite sym-
metric solution if and only if R2B' = 0 and the matriz X'B is positive semidefinite
symmetric. In thal case its general positive semidefinite symmetric solution has the form
(21) with X3y = Z +Y'B\Y, or (24), where Z 1s an arbitrary (n - r) X (n — r) posilive
semidefinite symmetric matriz, and Y s an arbitrary r X (n — r) matriz.
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