= M
Go(cs,cq,6) = c3+cqe VI _ a+p(e) + — VE,
- M
Gi(cs,cq4,6) = cze \/T+ cqg + — Ve - 1.
m
There exist e3 > 0(e3 < €2) and a unique set of continuous functions ¢;(cy(e) with 0 <
ci(€) < 2+ 2a such that for € € [0,¢e3], Fi(c;(€), c2(€),€) = Gi(cs(e), c4(€),€) =0, 1 =1,2.
Now let

wit,e) = Xn(t,€)+(01(6)8'\/?%02(6)6_‘/?(1_‘)+%\/5)€N;

w(t,€)

Xn(t,e) + (ca(e)e™VrF + cqle)e V9 4 %\/E)SN

By (2, Lemma 5| and |3, Theroem 1], there exists an €4 > 0(e4 < €3) such that for
arbitary € € (0,&4] the problem (1.1)—(1.2) has a solution satisfying w(t,e) < z(t,e) <
w(t,e) on t € [0,1]. Furthermore z(t,¢) satisfies (3.1)—(3.2).

Theorem 3 Assume that I-111, V hold, then for sufficiently small € > 0, the problem
(1.1)—(1.8) has a unique solution satisfying (3.1j—(3.2).
4. An Example

Consider the prblem ex' = f(t,z,W,(e)r',e), z(0) = =z(1), £'(0) = z'(1), where
f(t,z,y,€) and Wy(€) satisfy the conditons I- III, V. In addition f(t,z,y,e) = f(t +
1,z,y,¢) on t,z,y € Rl e € (0,¢q)].

The proof of Theorem 1 and Theorem 8 suggest z(t,e) ~ yo(t) + y2(t)e + ya(t)e? + - -
as in reference[4l.
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Uniformly Valid Expansions of Solutions to Nonlinear
Singularly Ferturbed Boundary Value Problems *

Dong Yujun Zou Erzin Yin Chenglong
(University of Agriculture and Animal Sciences of PLA, Changchun)

Abstract In this paper we will give uniformly valid expansions of solutions for boundary
value problems (1.1)—(1.2) {containing periodic boundary condition as a special case)
with a parameter € > 0, by means of the upper and lower solution method.

Keyworde uniformly valid expansion, singularly perturbation, bourdary value problem,
upper and lower solutions

I. Introductions

The referencelll discussed the problem ez" = f(¢, z,¢), L(z(0), z(1)) = 0, R(z(0), z(1),
z'(0),2'(1)) = 0, and gave the existence, uniqueness and an estimate of the solutions.
However, these are still two problems unsolved. First, it was required that f.(t,z,¢) have
a positive lower bound; secondly, the asymptotic expansions of the solution z(t,¢) and its
derivative z'(t,€) have not been given. In this paper, we consider the equation

ex" = f(t,z,Wy(e)x',€) (1.1)

and one of the following sets of boundary conditions

z(0) - ax(l) = b,
R(z(0), 2(1), Wa(e)2'(0), Ws(e)<' (1)) + 2'(0) - e&'(1) = 0

or

z(0) = z(1),2'(0) = z'(1), (1.3)

where f(t,z,y,¢), R(z,y,u,v),W;(¢) ({ =1,2,3) are continuous on 0 < ¢t < 1,z,y,u,v €
R,0 < € < gg(g0 > 0) and a, b, c are constants with a > 0,5 > 0.

In Section 2 we construct formal expansions of solutions to the problem (1.1)—(1.2).
In Section 3 we prove the main existence and uniqueness theorems and the uniformly valid
expansion. An example is given in Section 4.

Assume that

*Received Dec. 25, 1991.
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L f(t,z,y,€), R(z,y,u,v),W;(e) (f=1,2,3) are suitaubly smooth with w;(0) = 0.

1. fz(t,z,y,e) >00on0<t<1,z,ye R,0< e < ¢p.

1. There is a function u(t) such that f(¢,u(t),0,0) =00on 0 <t <1,

IV. R,(z,y,u,v) and Ry(z,y,u,v) are bounded on R*.

V. For every given € € (0, ¢y}, f(¢,,y, €) satisfies Nagumo’s conditionsl?.
Lemma 1 Assume that conditions IV and V hold and therc ezist functions w(t,e) and
w(t,e) such that for t € [0,1],¢ € (0, €]

w(t,e) > w(t,e), sw'(t,e) < f(t,w(t,e),Wi(e)w(t,e),¢),
ew'(t,e) > f(t,w(t,e),Wi(e)uw'(t,€),¢)

and
w(0,e) — aw(l,e) =&, w(0,e) — aw(l,e) = b,

R(w(0,e),w(1,e),Wy(e)w'(0,e), Ws(e)w'(1,€)) + w'(0,£) — cw'(1,€)
R(w(0,¢e),w(1,e), Wa(e)w'(0,e), Ws(e)w'(1,¢)) + w'(0,€) — cw'(1,€)

y ==

0,

<
> 0.

Then there exists an €2 € (0, €0] such that for every e € (0,€e3], problem (1.1)—(1.2) has
a solution z(t,€) satisfying w(t,e) < z{l,e) < w(t,e) on t €0,1].
For the proof, cf. {3, Theroem 3.1].

2. Constructing Formal Expansions

It 1s casy to see that the problem 2" = ex' + o+ ¢, x(0) = (1), 2'(0) = £'(1) has

\ P : - (== .

a unique solution z(t, €) satisfying z({,e) ~ - .ie (7) 4 l‘ Ve -t+e ase — 0 This
suggests that the solution of (1.1)-—(1.2) have the form

z(t,e) == y(t,e) + u(r, p) 4- v(s, 1), (2.1)

Le= Lty = 2 and y(t,e) = wo(t) + va(e + va(t)e? + oo, ulr, ) = wolr)

‘UI(T)[I + e ) U(S) l‘) = UQ(S) + 'UI(S)II. + Uz(S)I‘,Z 4 e,
Substituting equality (2.1) into (1.1), we have

where y(t,¢) is the regular part, u(r,u) and v(s,u) are the boundary layer functions,
T

ey"(t,e) + u"(r, 1) + v (s, 1) = St y(t,e),Wi(e)y'(t,€), €)
UG ) + ulr ) W) (1, 8) + 27,0 2)

= 1(t,u(t, ), Wile)y' (1,€)][,Z5 + 17 (6,9t €) + ulr, ) + vl(s, ),

i 1
Wl(E)(y,(t,E) + ;‘U’(T,y) - ;’U'(S,p),E) - f(t,y(t,E) + U(T,/l.),
_ t=1— us
Wl(e)(y‘(tas) + - u’(wa‘)aE)] = ‘L‘ -
€ = “'Z
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Expanding formally we obtain the equations:

f(t,yo(t),0,0) =0, (2.2)

vil2(t) = fz(t, 0(t),0,0)wi(t) )
+ Pyt wo(t), yo(t), -, vi-2(t), %i2(t)) (= 2,4,6,--),

ug(r) = /;1 [2(0,y0(0) + Oug(r),0,0)dbuo(r), (2.3)0

up(r) = f2(0,90(0) + uo(r),0,0)ur(r) (2.3)
+ Qk(T: u1(7)7 u'll(T)’ T ’uk—l(T)x u'k—l(r)):

v (s) = /: fz(1,y0(1) + Bvg(s),0,0)dbvo(s), (2.4)0

ve(s) = fz(1,y0(1) + vo(s),0,0)vi(s) (2.4)%

+ Ri(s,vo(s),v4(s), » vi-1(8), vie_ 1 (),

where P, is a known function of t, yo(t), yo(t),- -+, yi—2(t), ¥i_2(t); Q@ is a known fuction of
r,uo(7),ub(r), -+, ui—1(7), ui_,(r), in particular, when u,(r) is bounded, each @ can be
written as a polynomial of ug(r), u(r),- -+, uk-1(r), uf_, (r) without constant terms, all of
whose coefficients can be respresented by finite sums of the form 3" a;(r)r* with a;(7) being
bounded functions of 7; and R a known function of s, vg(s),vg(s)," -, vk—1(s),vy_,(s) in
the similar form as Q.
Substituting (2.1) into the boundary condition (1.2) we get the conditions of deter-
mining solutions:
u;(0) — av;(0) = b;, ul(0) + cvi(0) = d;, (2.5);

u,-(—f-oo) =0, v,-(—}—oo) =0, (2.6),‘

where b; is a known function of y;(0) and y;(1), and d; is a known function of yij)(O), yy)(l),
u{(0) and v} (0) with 0 < k<i—1,i=1,2,3---,7=0,1 and dg = 0.
In view of II, Il and (2.2);, we obtain successively the function y;(t) on 0 <t < 1:

yi(t) = [fz(t,yo(t),0,0)]_l [y:’~'2 - P,'(t, yO(t))' t :yi—2(t))] ’ (i =2,4,- )
Theorem 1 Assume that condition I—III are satisfied, then we can determine the func-
tions ui(t),vi(t) on t > O successively from (2.8),—(2.6)x. Furthermore, there ezists a

positive number sequence {M;}, independcent of y, such that

g (t)] + ul(8)] < Mie %t on't > 0, (2.7);
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lvg (t)] + Jvi(t)] < Mie™®t ont >0, (2.8);
where o 1s a positive constant.

Froof In fact, we can prove

lug()] + J(t)] < Mie "3 on ¢ > 0, (2.7)!
loi(t)] + |oi(t)] < Mie "0 *3) on t > 0. (2.8)!

Here we will only prove that the problem (2.3)—(2.6)o has a unique solution (ug, vg)
satisfying (2.7);—(2.8)}, since similar method and induction can prove the remaining parts.
To this end, consider the problem

' = /01 fz(0, yo(0) + 6z,0,0)d0z, z(0) fixed ,z(+o0) = 0. (2.9)

Let m = | lmlir(l ) fz(0,¥0(0) + y,0,0), in view of [2, Lemma 1] we obtain that the problem
y|<|z(0

(2.9) has a unique solution z(t) such that |z(t)] < |z(0)le”V™ on t € [0, +o0), z(+00) = 0.
And we can obtain that the unique solution z(t) of (2.9) has the following properties: z'(0)
is a strictly decreasing function with respect to z(0) and

[(0)] < |=(0)] - ™™,

z max . IJ:(O)' LemVmt
='(e)] < it 1/2(0,30(0) + y,0,0)| Jin , (2.10)
£'(0) - z(0) < 0. (2.11)

Similary we can show that the problem

1
' :/0 £2(0,0(0) + 0y, 0,0)dby, y(0) fixed ,y(+o00) = 0

has a unique solution such that

ly(&)] < |y(0)] - ™V,
! max - . M?ﬂ e~ Vmat
ly'(t)] < 'u|slu-(0)l|fz(l,yo(l) ty,0,0)] N , (2.12)

where my = | |r<n|‘r,(] )Ifz(],yo(l) +y,0,0). And y'(0) is a strictly decreasing continuous
visiv(0
function with respect to y(0), and

y(0)-y'(0) < 0. (2.13)
Now, let z(0) = ay(0) + b, I{y(0)) = z'(0) + cy'(0). Then I(y(0)) is a strictly decrcasing

continuous function, and if y(0) > 0 with z(0) > 0 then I(y(0)) < 0, if y(0) < 0 with
z(0) < 0 then I(y(0)) > 0. Thus there exists a unique value §(0) of y(0) such that
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I(§(0)) = 0. At this time, denote z{t) and y(t) by ug(t) and vo(t) respectively, then
(uo(t), vo(t)) is the unique solution of (2.3)o—(2.6)o. Furthermore, let

20)? = mi X(1, +,0,0), i 2(0,90(0) + y,0,0
(20) min | fe(hyo(1) +4,0,0), | min  fz(0,%0(0) +,0,0)
M. = i _ |5(0)]
o = 1[9(0)] +|ag(0) + bo] + max |fz(1,40(0)+ v,0,0)j-
lwi<ly(0)} o
|ag(0) + bo|
‘ (0, 40(0) + y,0,0)| - =22 T 700
s e )H“]lf( y0(0) + y,0,0)| 5

Then in view of (2.10) and (2.12), up(t) and vo(t) satisfies (2.7); and (2.8); respectively.

3. Main results

Theorem 2 Assume that conditions I-V are satisfied, then for sufficiently small € > 0,
the problem (1.1)—(1.2) has a solution z(t,€) satisfying

|z(t,€) — Xn(t,e)| < KeN(ed + e Vet 4 e VElm0) (3.1)

Z'(t,e) — X(t,e) < I(EN_%, 3.2
N

1t .
where Xy (t,¢€) E[y, )+ wi{ —=) + vi( )leZ, N is a nonnegative integer, K 1s a

\/E Ve
positive constant zndependent of €,yi(t),u;(t) and vi(t) are functions determined by The-
orem 1, and

m = min{f(t,z,y,e)|t € [0,1,]z — yo(t)]
< Juo(0) + [uo(0)] + 1,1y} < 1,€ € [0, 0]},
yi(t) = ys(t) = =yun-i(t) =0

Proof The proof is adopted from the proof of {1, theorem].

Let o(e) = [Xn(0,€) ~aXn(1,e)—b)-e™™ Then it is casy to see that p(e) = O(\/€). It
is also clear that there exists M; > Osuch that {f(¢t, Xy (t,€), Wi(e) X'(¢t, €)e) e XK (t.€)] <
Mie¥tionte (0,1}, € [0,e5]. We can suppose Wy(g) ~ Wiy + Wize? + -+, Let

M2 = (|W11| + 1)(4(1 —+ 4),
My = max(fltyz, v et € 10,11z - yo(t)
< Juy(0)] + vo(0) + 1, |y} < 1,e € {0,&0]}
M = A{l + Afg:\’[:«;.
And let
S M
Fo(ci,c2,€) = ¢y +cqe Vi e+ p(e) + -~ - Ve,

m

Wi M
F](CI,C-2,€) = Cle_\/}"fcz—l‘f‘i‘“'\/—c:,
m
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= M
Go(cs,cq,6) = c3+cqe VI _ a+p(e) + — VE,
- M
Gi(cs,cq4,6) = cze \/T+ cqg + — Ve - 1.
m
There exist e3 > 0(e3 < €2) and a unique set of continuous functions ¢;(cy(e) with 0 <
ci(€) < 2+ 2a such that for € € [0,¢e3], Fi(c;(€), c2(€),€) = Gi(cs(e), c4(€),€) =0, 1 =1,2.
Now let

wit,e) = Xn(t,€)+(01(6)8'\/?%02(6)6_‘/?(1_‘)+%\/5)€N;

w(t,€)

Xn(t,e) + (ca(e)e™VrF + cqle)e V9 4 %\/E)SN

By (2, Lemma 5| and |3, Theroem 1], there exists an €4 > 0(e4 < €3) such that for
arbitary € € (0,&4] the problem (1.1)—(1.2) has a solution satisfying w(t,e) < z(t,e) <
w(t,e) on t € [0,1]. Furthermore z(t,¢) satisfies (3.1)—(3.2).

Theorem 3 Assume that I-111, V hold, then for sufficiently small € > 0, the problem
(1.1)—(1.8) has a unique solution satisfying (3.1j—(3.2).
4. An Example

Consider the prblem ex' = f(t,z,W,(e)r',e), z(0) = =z(1), £'(0) = z'(1), where
f(t,z,y,€) and Wy(€) satisfy the conditons I- III, V. In addition f(t,z,y,e) = f(t +
1,z,y,¢) on t,z,y € Rl e € (0,¢q)].

The proof of Theorem 1 and Theorem 8 suggest z(t,e) ~ yo(t) + y2(t)e + ya(t)e? + - -
as in reference[4l.
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