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On the Problem of Ascending Subgraph
Decompositions into Matchings *
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Abstract Alavi has given the definition of the ascending subgraph decomposition. He
conjectured that every graph cf positive size has an ascending subgraph decomposition.

. .o . 1 .
In this paper it is proved that a graph G of size ( n~2f- > has an ascending subgraph
decomposition {G;},1 <1 < n, with G; = 1 K,, if the edge chromatic number z/(G) <
(n+2)/2.

I. Introductions

Yousef Alavi and others have given the definition of the ascending subgraph decompo
-sition(!). Let G be a graph of potive size ¢, and n be a positive integer for which

("3 )=ee (7))

Then G is said to have an ascending subgraph decomposition if G can be decoposed into n
subgraphs G;,Ga, - -, G,, without isolated vertices such that G; is isomorphic to a proper
subgraph of G;4; for 1 < ¢ < n — 1. Several classes of graphs possessing an ascending
subgraph decomposition are described in [1]. Here we have further results. We will use
the following notations.

|G|—size of a graph G,

A(G)—maximum degree of a graph G,

z'(G)—edge chromatic number of a graph G,

G1 N Ga—the cap of graph G, and G,

G U Gy—the union of graph G; and G,,

G — Gy—the difference of graph G, and G;.

A matching of a graph G is a subgraph of G without isolated vertices in which no two
edges are adjacent.

II. Some Lemmas
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Lemma 1 Let E; and E; be two edge-disjoint matchings of a graph G. If |Ey| > 2|E,|,
then there ezists a subgraph H of E) such that |H| > |E1| — 2|Ey| and HN Ey =0 (ice.,
H and E; are both vertez-disjoint and edge-disjoint).

Lemma 2 Let Ey and E; be two edge-disjoint matchings of a graph G. If |E| < n —2
and |E1| > 2n — 1, then there exists H C Ey such that G, = E; U H = nK,.

Lemma 3 Let E; and E; be two edge-disjoint matchings of a graph G. If 3 < |Ez| < n—-2
and %n < |Ey| € 2n — 2, then there ezxists Hy C Ey and H, C E; such that

G, = Hi|JH; = nK,,
Gn-—l - El—ng(n—l)Kz.

Lemma 4 Let E, and E; be two edge-disjoint matchings of a graph G. If n < |E,| <
|E1| € 2n — 2, then there ezists Hy C E) and G,, C E; such that

Gn = nK2’
Grnoa [IlLJ(Ez—G,,);(ﬂ—l)Kz.

ITI. Thcorem and Corollaries

n+1
2

ascending subgraph decomposition {G;},1 <1 < n, such that G; = i K.

Theorem Let G be a graph with size ( ) If2'(G) < (n+2)/2, then G has an

Proof We prove by induction on n. For n = 2,G has desired the ascending subgraph de-
.. ~ ~ 2 o
composition except G = Cs. If G = C3, X'(G) =3 > % So the result holds. Similarly
the result also holds for n = 3.
Assume the result holds for n — 2. We prove it holds for n > 4.

Let 2'(G) = k, and let Ey, E,, ..., E; be the edge color classes in a k-edge-coloring of
G. We can assume |E1| > |Ey] > -+ > |Ey.

n+1
( 9 )—(2n~1)

n/2

By Lemma 2, there exists H C E; such that G,, = E, U H = nK,. Define G,,_; C
Ey — H such that G,y = (n — 1)K,.

1) If |Ey| > 2n -1,

| Ex| < <n-2

2) If |[Ey| < 2n — 2, we consider three cascs.

Case 1 If|Ey|=n—1, welet Gy = Ey = (n — 1)K,. Define G, C E; such that
G" = nKz.
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Case 2 If|Ey| < n— 2, then
n+1 n 3
Ey| > — Z(n-2)= =n.
|E1|_< 5 ) y(n=2)=gn

By Lemma 3, there exist H; C E} and Hy C E; such that

G, = H,UH,
Gn—l EI—HI

an,
(n - I)Kz

fle I

I

Case 3 If|Ez| > n, then
n S IEZI S ’Ell S 2n - 2.

By Lemma {, there ezist G,, C Ey and Hy C E; such that

G, = nKa,
C,., = Hyu (E2 - G”) = (n — I)Kg
In each of Case 1-3, welet G' = G -G, — G,_1. Then |G'| = ntl , ©'(G') < 2.
2 1=

By hypothesis, G’ has an ascending subgraph decomposition {G;},1 < ¢ < n — 2, such
that G; = i K,.

By the theorem of Vizingl?l, for every graph G, either G € C' or G € C*. So we have
the following corollaries.

n—+1
‘)

P

Corollary 1 Let G be a graph with |G| = ( ) Then G has an ascending subgraph

decomposition {G;},1 <1 < n, such that G; = iKgl, provided A(G) < (n + 2)/2 if 2'(G)
s A(G) or A(G) < n/2 if 2'(G) = A(G) + 1.

Corollary 2!l Let G be a graph with |G| = ( " : 1

G has an ascending subgraph decomposition {G;},1 < i < n, such that G; =1K,.

), forn >4 and A(G) < 2. Then

n+1
2

F has an ascending subgraph decomposition {G;},1 <i < n, such that G; = 1K.

Corollary 31! Let F be a forest with |F| = ( ) and n > 2A(F) -~ 2 > 2. Then

n+1
2

Then G has an ascending subgraph decomposition {G;},1 <1 < n, such that G, = iK;.

Corollary 4 Let G be a bipartite graph with |G| = ( ), and n > 2A(F) —2 > 2.
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