Definition 4.2 Let G be a Lie superalgebra, if G contains no complete proper graded
1deals, then G is called a simply complete Lie superalgebra.

For example, simply Lie superalgebras A(m,n)(m # n), B(m,n),C(n), D(m,n),W (n),
.§'(n) are simply complete Lie superalgebras.

From Lemma 4.1, Theorem 2.2 and Definition 4.2, we obtain

Theorem 4.3 Let G be a complete Lie superalgebra. Then

1) G s simply complete if and only if G cannot be decomposited into the direct sum of
non-trivial graded ideals.

11) G can be decomposited into the direct sum of simply complete graded ideals.
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Abstract In this paper, we introduce two notions of Complets Lie Superalgebra and the
Holomorph of a Lie Superalgebra, and ol-ain some equivalent conditions for Complete
Lie Superalgebras. then we study the strulure theorem of Complete Lie Superalgebras.
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1. Preliminaries

Definition 1.1 Let G = C5® Gy be a superalgebra whose multiplication is denoted by
[,]. This implies in particular that (Go,Gg) C G,1p for all o, € Z;. We call G a Lie
superalgebra if the multiplication satisfies the folinwing identities

[a,b] = —(=1)*f[b,q] (graded skew-symmetry),
[a, [b,c]] = [[a,b],c] + (-1)2P[b,[a,c]] (graded Jacobi identity)

forallae G,,b€Gy,c € Gy, B € Z.

Gp is an ordinary Lie algebra, G is a G- module.

From now on, if a € G,,a € Z,, then we denote the degree & of a by dega = a.

Throughout, if dega occurs in an expression, then it is assumed that a is homogeneous,
and that the expression extend to the other elements by linearity. The base field is the
complex field C, and dim G < oo.

A non empty sabspace K of G is called an ideal if [a,k] € K foralla € G,k € K. We
shall call G a simple Lie superalgebra if G contains no nontrivial ideals.

A graded subalgebra K (resp. ideal) of G is a subalgebra (resp. ideal) of G and it
contains the homogeneous components of all of its elements, i.e.,

K= K()Ga,
a€Zy

so G/K =G5/KNG5®G;/K NGj is the quotient Lie superalgebra of G by K (when K
is a graded ideal of G).

*Received Oct. 8, 1991. Project Supported by the Hebei Provice Science Foundation, No.193005.
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The centralizer of a subset X of G is Cg(X) = {z € G|[z, X]| = 0}.C¢(G) is called the
centre of G and denoted by C(G).

A linear transformation ¢ : G — G'(G = G5®G1,G' = Gy G are Lie superalgebras)
is called a homomorphism if (G5) C G, ¢(G1) € G and pz,y] = [p(z), p(y)], for all
z,y € G;p is called a monomorphism if Ker ¢ = 0, an epimorphism if Im ¢ = G', an
isomorphism if it is both mono- and epi-. If G is isomorphic to G', we denote by G ~ G'.

A linear mapping ¢ : G — G’ is said to be homogeneous of degree s5,s € Z3, if

9(Ga) C G, foralac Z,.

We denote by End,(G) the set of all linear mapping g : G — G of homogeneous of degree
8,8€ Z3,1e.,End,(G) ={9: G — G| ¢(Ga) C Gats,x € Z2}.
A derivation of degree s(s € Z3) of G is an element D €End,(G) with the property

Dla,b] = [D(a),b] + (-1)""**[a, D(b)] for all a,b € G.

The set of all derivations of degree s is denoted by der,(G) C Endgs{G).
Put der(G) =derg(G)-+der;(G). It is closed under [6;,8;] = 6;8; — (—1)**orireb25,5,,
der(G) is called the Lie superalgebra of derivations of G. It is easy to see that

der(G) = derg(G) @ derj(G)

is a direct sum.

If a € G we define the linear map ada : G — G by ada(b) = [e,b] for all b € G, it
follows from the graded Jacobi identity that ada is a derivation of G, for all a € G. It
is clear that ad is a homomorphism of G into Lie superalgebra der(G). The derivations
of G which are of the forms ada,a € G, are called inner. Let ad(G) = {adala € G},
then ad(G) is an ideal of der(G). One easily checks that ada €der,(G) if and only if
a€G,,s € Zy;a € G, hence ad(G) = ads(G) ® ad;(G).

2. On complete Lie superalgebras

Definition 2.1 We shall call a Lie superalgebra complete if its derivations are all inner
and ils cenire is 0.

Example 1 If G is one of the classical Lie superalgebras A(m,n), m # n, B(m,n),C(n),
D(m,n), F(4),G(3) then G is a complete Lie superalgebra.

Example 2 If G is one of then W(n) and S(n), then G is a complete Lie superalgebra.
The following theorem is the main result in this section, which is the generalization of
Jacobson [1].

Theorem 2.2 If K is complete and a graded 1deal in G, then G — K @ B, where B isa
graded ideal of G.

Proof We note first that if K is a graded ideal in G, then the centralizer B of K is a graded
ideal. B = {be G | [b, K] = 0} is evidently a subspace. For any b € B C G = G5 ® Gy,
let b = by + 01,05 € G(),bl € Gia then [bo +b1,k] =0forallke K = KﬂGa@KﬂGi,
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hence (b, k] = [b1,k] = O for all k € K. Thus by € B,b; € B, we have B = By + B; where
B, = BNG; (1 =0,1), hence B is a graded subspace. Now, if b € B and a € G, then
a, (b, k]) = [[a, b], k] + (—1)te=aderd[p [a k]|, ie., O = [[a,b], k] + O, we obtain [[a,b],k] =0
and [a,b] € B. Hence B is a graded ideal in G.

Let K be complete, if ¢ € K N B, then ¢ is in the center of K and so ¢ = 0. Hence
KN B =0. Next let a € G, since K is an ideal in G, ada maps K into itself and hence it
induces a derivation in K. This is inner and so we have a k € K such that ada |x= adk.
Let a = ap + a1,k = kg + k1, where a; € G;,b; € K 1 G;, we obtain

adag + ada; — adkg + adk,,

then ada; = adk;(i = 0,1), hence [ag,z] = |ko, z|,[a1,z] = [k1,2] for all z € K. Take
bi = a; — ki, so b; € B;(+ =0,1), let b= by + by so we have a = b+ k,b &€ B,k € K. Thus
G =K+ B= K ® B as required.

Theorem 2.3 Let K be a Lie superalgebra, if any Lie superalgebra G for which K 1is its
ideal has a decomposition of ideals G = K®Cs(K), then K 15 a complete Lie superalgebra.
The proof follows immediately from Theorem 3.4 in the following section.

3. The holomorph of Lie superalgebras

Let H(G) = G@der(G), I(G) = G ® ad(G) where & is the direct sum of vector spaces,
then

H(G) = Hy(G)® Hy where Hy(G) = G4 @ dery(G),a € Zy,
I(G) = I3(G)® I; where I4(G) = G4 @ ads(G),a € Z;

are graded vector spaces.
Lemma 3.1 Under the above notations, if we define a bracket as follows
[z+ D,y + E] = [z,y] + Dy — (_l)degEdengz + D, E|

forallz,y € G =Gy® Gi; D, E €der(G) (resp. ad(G)), then H(G) (resp. I(G)) is a Lie
superalgebra.

Proof It is clear that H(G) is a Z;-graded space and [Ho(G), Hp(G)] € Hay5(G), where
a,fB € Z,.

Now [y + E,z + D] = [y,z] + Ez — (—1)**P* Dy + [E, D], we can check that [y +
E,z + D| = (—1)(-1)*~=+D)alv+E)[z D y + E| case by case. For example, when
deg(z + D) =deg(y + E) = 1, we have

[t+ D,y+ E] = |[z,y/+ Dy+ Ez+|D,E],
v+ E,z+ D] = [y,z]+ Ez+ Dy+ [E, D],

since [z,y] = [y,z] in G,[D, E| = [E, D] in der(G) (here degz =degy = 1, so [z,y] = [y, z]
in G, [D, E] = [E, D] is similar in der(G)), so
[2+ D,y + B] = (-1)(~1) 480+ P8 By 4 o2 4 D] in H(G).
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Next, we will check the graded Jacobi identity in H(G) case by case.
When deg(a + D) =deg(b+ E) =deg(c+ F) =1

31) [a+ D,b+E,c+ F)]=[a+ D,[b,c]+ Ec— (~1)isF 4t Fp 4 [E, F|]
= [a, [b,¢c]] + [a, Ec] + [a, Fb] + D{b,c] + DEc+ DFb— [E,Fla+ [D,[E, F]),
3.2) [[a+ D,b+ E),c+ F] = [[a,b] + Db — (—1)**Ed s Eq 4 [D E],c + F)
= [[a,d],¢] + [Dbd,c] + [Ea,c| + |D, E]c — Fla,b| — FDb— FEa+ [[D, E|, F].
The difference 3.1)—3.2) is
(-1)[,[a,c]] + [a, Ec] — [Ea,c]| + |a, Fb] + F|a,b] + D[b,c] — [Db, c|
+ DEc - |D, Elc + DFb+ FDb — |E, Fla + FEa + (-1){E, [D, F]|
= -I[b,[a,c]] - Ela,c] + [Fa,b] — EDc+ D, F]b— EFa ~ [E,[D, F|]
— (_1)deg(ﬂ+D)deg(b+E)[b+ E, [a+ D,c+ F”

Hence, graded Jacobi identity holds (the other cases are similar). Thus, H(G) is a Lie
superalgebra. Similarly, I(G) is a Lie superalgebra.

Definition 3.2 The Lie superalgebra H(G) and I(G) are called holomorph and inner
holomorph of G respectively.

It is clear that G and I(G) are graded ideals of H(G); H(G)/G is isomorphic to
der(G) = HG/G()@ Hi/Gi'

Evidently, G is complete if and only if H(G) = I(G).

Lemma 3.3 Under the above notations, we have
1) Cu(¢)(G) = {z — adz | Vz € G} is a graded ideal of H(G),
i) GNCh(c)(G) = C(G) (is a graded 1ideal of G),

1t1) The map 0 of H(G) into H(G) defined by the following 0 : 2+ D+ adz —z+ D s
an isomorphism of H(G) such that §* = id,0(G) = Cy(c)(G).

Proof One can check directly that both (i) and (ii) are true (c.f. Lemma 5 in [2]).

For (iii), one easily sees that 6 is linear, 82 = id and 0(G) = Cq(s)(G), hence, we must
prove that 6 preserve the bracket, that is [§(z + D),0(y + E)| = 8([z + D,y + E).

When deg(z + D) =deg(y+ E) =1

[6(z+ D),0(y+ E)] = ladz — 2+ D,ady — y + E]
= [z,9) - adz(y) - Dy - (~1)4e8@H+EIE2 (4qy | E)(-2) + [adz + D, ady + E]
= —-Dy- (—l)deg(“d”E)degzady(—z) + E(—z) + [adz,ady]
+ [adz, E| + |D,ady| + |D, E]
= ad([z,y] + Dy + Ez) - ([z,y] + Dy+ Ez) + [D, E]
— 0+ D,y + B)).
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The other cases
a) degz =deg(adz) =0, degD = 0, degy =deg(ady) = 0, degE =0,
b) degz =deg(adz) = 0, degD = 0, degy =deg(ady) =1, degE =1

are similar, we omitted the proof here.
Now, we obtain the main theorem of this section.

Theorem 3.4 Let G be a Lie superalgebra, and the holomorph of G has a decomposition
of graded ideals H(G) = G ® Cy()(G), then G is a complete Lie superalgebra.

Proof By ii) of Lemma 3.3 we have C(G) = G N Cx(s)(G) = 0. Next
der(G) = H(G)/G = Cy(c)(G) = (G) = G,

but ad(G) =~ G (since C(G) = 0), so der(G) = ad(G). Since ad(G) is an ideal of der(G),
hence ad(G) =der(G).

4. The decomposition of complete Lie superalgebras
Lemma 4.1 Let G = K1 @ K, Ki(i = 1,2) are graded ideals in G. Then we have
(1) if C(G) =0 then ad(G) = ad(K;) ® ad(K3), der(G)=der(K)®der(K,);

(it) G is complete if and only if Ky and K, are complete, moreover, if G and K, are
complete then K, 15 complete.

Proof For any D €der(K}), let Dzg = O for all z; € K, then D €der(G), so we
regard der(K;) Cder(G), and similarly der(K;) Cder(G). Evidently, D €der(K,) if and
only if Dzy = 0,Vzy € Ko; D €der(K,) if and only if Dz; = 0,Vz; € Ky, so

der (K1){) der (K3) = 0.
Now, for any D; €der(K,), D €der(G),z; € K3, one have
[D,Dllxz = (DD1 - (—l)d'gD“kKDDlD)(Ig) = (—1)(—1)quldc5DD1DI2,
but, for any z; € K;(1 = 1,2), D € der(G), one have

[DIl,:Ez] = D[II;IZ] - (—l)deKDdegzl[xl,Dzz]
= —(=1)%*DPesnig; Do) € Ky ng,
so (Dzy,z3] = [z1, Dzs] = 0, thus Dz; € K;(i = 1,2), hence [D, D,| € der(K), that is,
der(K}) is an ideal in der(G). Similarly, der(K32) is an ideal in der(G).
Thus we know that there exist D; € der(K;)(+ = 1,2) such that [D = Dy + D,, so

der(G) = der(K,) @ der(K3) (hence ad(G) = ad(K,) ® ad(K32)).
Use (i) we know that (ii) is clear.
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Definition 4.2 Let G be a Lie superalgebra, if G contains no complete proper graded
1deals, then G is called a simply complete Lie superalgebra.

For example, simply Lie superalgebras A(m,n)(m # n), B(m,n),C(n), D(m,n),W (n),
.§'(n) are simply complete Lie superalgebras.

From Lemma 4.1, Theorem 2.2 and Definition 4.2, we obtain

Theorem 4.3 Let G be a complete Lie superalgebra. Then

1) G s simply complete if and only if G cannot be decomposited into the direct sum of
non-trivial graded ideals.

11) G can be decomposited into the direct sum of simply complete graded ideals.
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