Theorem 14.3.1]). Again from lemma 1.(2) we see that |H| > n. It is contrary to G being an OS_n group. Hence $n \le 6$.

The Proof of Theorem The conclusions (1) and (2) are obvious for n = 1, 2. For n = 3 we have $|G| = 2 \cdot 3$, so the conclusion (3) holds. For n = 4 we have $|G| = 2^2 \cdot 3$. Since G does not contain any subgroup of order 6, we infer that $G \cong A_4$.

Now we prove that OS_n groups (n = 5, 6) do not exist. Let G be an OS_5 group and $|G| = 2^2 \cdot 3 \cdot 5$. If G is not simple, then we may assume that N is a minimal normal subgroup of G and $|N| \geq 2$. Hence $|N| = 2, 3, 2^2$ or S. Considering the semidirect product of S0 and the Sylow S1 subgroup of S2, where S3 is prime to S4, we derive a contradiction. If S4 is simple, then S5 groups do not exist. Similarly we may prove that S5 groups do not exist also. The theorem is proved.

Comparing with Ref [1], here we do not use the classification of finite simple groups.

Problem To classify all finite groups whose proper abelian subgroup orders are consecutive integers.

References

- [1] R.Brandl and Shi Wujie, Finite groups whose element orders are consecutive integers, J. Algebra, 143(1991), 388-400.
- [2] M.Hall, The Theory of Groups, The Macmillan Company, New York, 1959.
- [3] L.Hua, Introduction to Number Theory, Academic Press, Beijing, 1979 [In Chinese].
- [4] D.Gorenstein, Finite Groups, Harper & Row, London/New York, 1968.

真子群阶为连续整数的有限群

施武杰

(西南师范大学数学系,重庆630715)

摘要

本文回答了D.Macttale 教授所提出的如下问题: 确定所有的有限群, 其真子群的阶为连续整数。

Finite Groups whose Proper Subgroup Orders Are Consecutive Integers *

Shi Wujie

(Dept. of Math., Southwest-China Teachers University, Chongqing 630715, China)

In [1] the authors gave a complete classification of finite groups whose element orders are consecutive integers. After [1] was published, D.Macttale put forward the following problem: To classify all finite groups in which proper subgroup orders are consecutive integers. In this note we answer the above question and prove the following conclusion.

Theorem Let G be a finite group and $\pi_s(G)$ a set of proper subgroup orders in G. If $\pi_s(G) = \{1, 2, \dots, n\}$, then $n \leq 4$ and one of the following holds.

- (1) n = 1 and $G \cong Z_p$, p prime.
- (2) n=2 and $G\cong Z_2\times Z_2$, or $G\cong Z_4$.
- (3) n=3 and $G\cong S_3$, or $G\cong Z_6$.
- (4) n=4 and $G\cong A_4$.

All groups discussed will be assumed to be finite and the notation is standard; see [4].

Lemma 1 Let n be a positive integer. If $n \ge 7$, then there is the kth prime of the prime series satisfying the following inequalities.

- (1) $n \geq p_k > \frac{n}{2}$, and
- (2) $p_1p_2\cdots p_{k-1} > n$, where $p_1 = 2, p_2 = 3, \cdots$, and p_i is the ith prime of the prime series.

Proof (1) is obtained immediately from Bertrand's postulate (see [3, Theorem 5.7.1]). And we may immediately check (2) for $n \leq 10$. While $n \geq 11$ we have $p_{k-2} \geq 5$ and the conclusion is similarly obtained from Bertrand's postulate.

For convenience, we call the groups G whose proper subgroup orders are consecutive integers OS_n group, where n is the maximal integer in $\pi_s(G)$.

Lemma 2 Let G be a group. If G is an OS_n group, then $n \leq 6$.

Proof Let p_k be the maximal prime and $p_k \leq n$. Since G is an OS_n group, $p_1p_2 \cdots p_k \mid |G|$, where p_i is the *i*th prime of the prime series. Suppose P is a Sylow p_k -subgroup of G, then $|P| = p_k$ and P is cyclic by the assumption. Considering the normalizer $N_G(P)$ of P in G we have $|N_G(P)| \leq n$. If $n \geq 7$, then $N_G(P) = P$ from Lemma 1.(1) Therefore G has a normal p_k -complement H and $|H| \geq p_1p_2 \cdots p_{k-1}$ from Burnside's theorem (see [2,

^{*}Received Dec. 7, 1992. Project Supported by the National Natural Science Foundation of China.

Theorem 14.3.1]). Again from lemma 1.(2) we see that |H| > n. It is contrary to G being an OS_n group. Hence $n \le 6$.

The Proof of Theorem The conclusions (1) and (2) are obvious for n = 1, 2. For n = 3 we have $|G| = 2 \cdot 3$, so the conclusion (3) holds. For n = 4 we have $|G| = 2^2 \cdot 3$. Since G does not contain any subgroup of order 6, we infer that $G \cong A_4$.

Now we prove that OS_n groups (n = 5, 6) do not exist. Let G be an OS_5 group and $|G| = 2^2 \cdot 3 \cdot 5$. If G is not simple, then we may assume that N is a minimal normal subgroup of G and $|N| \geq 2$. Hence $|N| = 2, 3, 2^2$ or S. Considering the semidirect product of S0 and the Sylow S1 subgroup of S2, where S3 is prime to S4, we derive a contradiction. If S4 is simple, then S5 groups do not exist. Similarly we may prove that S5 groups do not exist also. The theorem is proved.

Comparing with Ref [1], here we do not use the classification of finite simple groups.

Problem To classify all finite groups whose proper abelian subgroup orders are consecutive integers.

References

- [1] R.Brandl and Shi Wujie, Finite groups whose element orders are consecutive integers, J. Algebra, 143(1991), 388-400.
- [2] M.Hall, The Theory of Groups, The Macmillan Company, New York, 1959.
- [3] L.Hua, Introduction to Number Theory, Academic Press, Beijing, 1979 [In Chinese].
- [4] D.Gorenstein, Finite Groups, Harper & Row, London/New York, 1968.

真子群阶为连续整数的有限群

施武杰

(西南师范大学数学系,重庆630715)

摘要

本文回答了D.Macttale 教授所提出的如下问题: 确定所有的有限群, 其真子群的阶为连续整数。