The Compactness of Block Diagonal Operators *

Li Juexian
(Dept. of Math., Liaoning Univ., Shenyang 110036, China)

Key Words block diagonal operator, compact operator, operator weighted shift.

Let \mathcal{H} be a comples separable Hilbert space and $\mathcal{B}(\mathcal{H})$ denote the algebra of bounded linear operators on \mathcal{H} . Let $\mathcal{K}_+ = \sum_{i=0}^{+\infty} \oplus H$ and $\mathcal{K} = \sum_{n=-\infty}^{+\infty} \oplus H$. In this note, we consider a block diagonal operator $D = \sum_{i=0}^{+\infty} \oplus A_n$ (respectively $D = \sum_{n=-\infty}^{+\infty} \oplus A_n$) on \mathcal{K}_+ (respectively \mathcal{K} , where $A_n \in \mathcal{B}(\mathcal{H})$ for each n and $\sup ||A_n|| < +\infty$.

When dim $\mathcal{H}=1$, it is known that D is a compact operator if and only if $\lim_{n\to\infty}a_n=0$, where A_n is replaced by a scalar a_n (see [1], Problem 171). In general terms, we have come to following conclusion.

Theorem A block diagonal operator $D = \sum_{i=0}^{+\infty} \oplus A_n$ or $D = \sum_{n=-\infty}^{+\infty} \oplus A_n$ is compact if and only if its every diagonal element A_n is compact and $\lim_{n\to\infty} ||A_n|| = 0$.

By the above theorem, we can obtain several corollaries as follows.

Corollary 1 If H is an infinite dimensional Hilbert space and there exists a diagonal element A_n which is invertible, then the block diagonal operator D can't be compact.

An operator $S \in \mathcal{B}(K_+)$ is called a unilateral operator weighted shift with the weight sequence $\{A_n\}_0^{+\infty}$ if

$$S(x_0, x_1, \cdots) = (0, A_0x_0, A_1x_1, \cdots), \forall (x_n) \in K_+,$$

which is denoted by $S \sim \{A_n\}_0^{+\infty}$. Analogously, we can define a bilateral operator weighted shift $S \sim \{A_n\}_{-\infty}^{+\infty}$ on K.

Corollary 2 Let $S \sim \{A_n\}$ is an operator weighted shift (unilateral or bilateral), then S is compact if and only if every weight A_n is compact and $\lim_{n\to\infty} ||A_n|| = 0$.

Corollary 3 A compact unilateral or bilateral operator weighted shift $S \sim \{A_n\}$ belongs to Schatten p-class if and only if $\sum \sum \lambda_{nm}^p < +\infty$, where $\lambda_{n1}, \lambda_{n2}, \dots, \lambda_{nm}, \dots$ are the eigenvalues of $[A_n] = (A_n^* A_n)^{1/2}$, each repeated as often as its multiplicity.

References

[1] P.R. Halmos, A Hilbert Space Problem Book, 2nd. ed. Springer-Verlag, 1982.

^{*}Received Dec. 12, 1991.