On the other hand, {£*},4|=,, forms a basis of 7,. So, we have the expression

p(z) = Z ca&* for some c4.
la|=n
But, p*(v;) = 0 implies ¢, = 0 for « = ne;, 1 =0,1,...,n. Therefore,

p(z) = Z ca €.

|a|=n,a;<n

. 1
H ¥ — p*t < @< Z. Th
ence, |p*(z) — p"¢(z)| < Z £* < - us,

|aj=n,a;<n

1) = p(2)] < 11(=) - " (@) + Ip" (=) - p"*(2)] < 2Ba()) + 1,

the theorem is proved. O
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Some Properties of Bernstein Polynomials on a Simples

Wu Shuntang
(Dept. of Math., Zhenjiang Teacherls College Zhenjiang, Jiangsu 212003,China)

Hong Dong
(Dept. of Math., Texas A & M University, College Station, TX77843, U.S.A.)

Abstract Let B, (f,-) be the Bernstein polynomial of degree n for a continuous function
f with respect to a d-dimensional simplex o. In this paper, the approximation error of
partial derivatives of f by the partial derivatives of B, (f, ) for f € C"(o) and for f €
CT+2(0) are obtained. Also, the approximation, in L,- norm, by the partial derivatives
of Bernstein polynomials with integral coefficients on the simplex is considered.

Key words Bernstein polynomial, integral coefficient, derivative approximation.

1. Introduction

As usual, let R denote the set of all real numbers and Z ; the set of nonnegative integers.
Let N := Z,\{0}. Thus R? denotes the d-dimensional Euclidean space, and Z4 is a set
of multi-index. Let o be a d-dimensional simplex with vertex v°,---,v%, here we assume
that v € R%, 1 = 0,.--,d are in general positions; i.e., the vectors v' — v®, { = 1,--.,d
are linearly independent. It is clear that, for any z € R?, there exists a unique vector
€= (&, -+, &) € R4 such that

d d
z=3 &' ) &=1
1=0 =0

The coefficients of £ = (&, -, £q4) are called the barycentric coordinates of = with respect
to the simplex . For £ = (z1,-++,z4) € RY, y = (y1, -+, y4) € R?, z-y denotes the inner
product of x and y, i.e.,

d
2y=Y 2
1=0

*Received Jun. 20, 1992.
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d
Let @ = (g, *+,aq) € Z4! be a multi-index with the length |a| = Za.- =n, and
i:0

z € 0. The Bernstein polynomial basis of degree n is given by

Ba(z) = ( . ) 3

1
with ( n ) = and £ = Lrgx... £x Clearly,
[ aolal !

e o]

Ba(-) > 0, and Z Bo() =1

lal=n

on o. Associated with a continuous function f € C(c), the n** degree Bernstein polynomial
of f with respect to o is defined by

Bn(fa ) = Z f(Ia)Ba('),
jaj=n
d

. 1 ;. .
where the points z, = — Z a;v* with |a] = n are called B-net points.
n “

1=0
To consider the derivatives of functions defined over an arbitrary simplex, it is con-
venient to make use of directional derivatives. For u,v € R% let y = u - v, then the
directional derivative of a function f with respect to y is defined as usual:

D) = iy LSO 5, 0 g e o

t—>0 t 1
For convenience, corresponding to the barycentric coordinates of vertices v¥ ... v¢, we
use eg, - - -, eq to denote the unit vectors in R4*t!. The directional derivatives with respect
to the directions v* — 4%, { =1,...,d,or ¢, — ey, 1 = 1,...,d in barycentric coordinates,
are denoted by D;, 1 = 1,..., d. If we identify o with the d- dimensional standard simplex

sq, then the directional derivatives D; coincide with the partial derivatives Ey As a
Iy

consequence, we can replace multiple partial derivatives of a function f on ¢ by
DPf() = (D{*--Dg*f(), feCP(o),

where 8 = (81, -,0a) € ZL.

The main purpose of this paper is to investigate the approximation properties of the
derivatives of B,(f,-) and B:(f,-), the Bernstein polynomial with integral coefficients.
The paper is organized as follows. In Section 2, we estimate the errors of partial derivatives
DPf of f € C"(s) and f € C"*%(g) approximated by DP B, (f,-) with || < r respectively.
Section 3, we discuss the derivative approxmation, in Ly-norm, of Bernstein polynomials
on o with integral coefficients.
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2. Derivative approximation on B,(f,")

For the simplex o = [V] = [v°,---,v4], the boundary of o is made up of faces, i.e., of
convex hulls of subsets of V = {v°,--- v?}. For any W C V, we call [W] the W-face of
o. If the center point of the circumscribed sphere of the W-face is inside of (W], we call
[W] the central side face. For any simplex o, there exists one of its faces which should be
central side face. Let O(W) denote the circumscribed sphere of W, and p,, the radius of
O(W). We define

p = max{py; W — face is central side face of ¢}. (1)
For z € R%, ¢ = (&0, &1, -+, €4) are barycentric coordinates of z with respect to
o = [V]. Let
d ) ) d d ] ]
h(z) =D &v' vt - D ) &Gigiv' vl
i=0 i=0 ;=0
: ; : : o ;
It is easy to see that h(v') = 0, for : = 0,1,---,d. Notice that z, — z = L(—— - &)Y,
n
)
we can easily figure out that
h(z
> a2l Bulz) = 2. (2
n
la|=n
Furthermore, Jia and Wu [JW| point out that
max h(z) = p?. (3)

z€0

The Bernstein polynomial provides an approximation to f € C(o), which, on o, con-

verges uniformly to f as n — oo. For the functions f with continuous partial derivatives,
0 a

let f' — (__f_’,_f

6:1:1 aId

timation holds. In particularly, if d = 1, we get the theorem 1.6.2 in [L].

) and w1 (6) = maxyy<s [|f'(-,+y) — f'(-)ll. Then the following es-

Theorem 2.1 For f € C'(0), then

If(I)—Bn(f,I)IS(p+p2)%w1( ), z€a, (4)

-

n
where p is given by (1).

Proof By the mean value theorem,

f(z)= fly) = Doeyf(2)=f'(2) - (z—y)
= f'ly) - (e-y)+ (['(z) = f'(¥) - (z - v),
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where z = y+ 0(z — y) and 0 < 6 < 1. Note that the absolute value of the last term does

not exceed ||z — y||(1 + = = y”)wl(é). One gets that

6
|£(z) = Bu(f,2)| = | 3 (f(2) — f(2a))Ba(z)]
|a|=n
<12 (@) (2~ za)Balz)| + D |I1'(2 (@)l = zal| Ba(2)-
le|=n lal=n

The first sum becomes zero since By(z,z) = z. Using Schwarz inequality and (2), and
choose § = —\/17, we have

llz - IaHz

f(z) = Balf,2)| < wl(a)mz_n(uz—za1|Ba(z)+TBQ(I))
< 6((I§n||x—xa||23a( N2+ ,R”z”“” Ba(z))
< wl(a)(("%’)‘/%",f?)
= a2 (/R + h(a)).

So, we obtain the pointwise error estimation

|f(z) - Ba(f,z)| < —w1 \/ z) + h(z

Combine it with (3), the proof is complete. O
The following exact error estimate for f € C*(o) approximated by Bernstein polyno-
mial By, (f,-) is due to Jia and Wu [JW].

Theorem A Let f € C*(0) and M = maxi<i j<d ||DiD;fllcc. Then

dM p?
2n

[f(z) = Bn(f,2)| <

TEoOo,

1
where p is defined by (1) and the coefficient before — is sharp.
n

To estimate derivative approximation, we need the forward difference operator which
is defined inductively as follwos:

A (za) = f(za),
Af’f(:ca) = Af—lf(xa+e,-——e(.) - A:l'c_lf(za),
APf(zq) = AP AP ASif(z,) for ge i

It is not difficult to show that the following derivative formula for Bernstein polynomial

holds:
n!

|ﬂ|) Z Aﬁf(Ia+|ﬂ|eu)Ba(m)' (5)

lal=n—|8]

B.(f,z) = (
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In fact, it suffices to show that

D¥Ba(f,2) =

_ Z At,"f(za-f—ke”)Ba(-T)- (6)
(n ) ja|=n—k

Denote z = v* — v°. Then

DiBa(z) = lim Ba(z + tz) — Ba(z)

t—0 t

= jm t
a—e; 1 a—en

N n!((a—e,)f CEr

= n(Ba-c,(z) = Ba-e,(2)).

Hence,
D; B =n Z f Ia B, e )_ Ba—e'.(z)) =n Z Aif(xa—{»«:u)na('-r))
|a|=n ja|l=n-1

and (6) follows by induction.
Now, we are in a position to prove the following

Theorem 2.2 If f € C"(0), and w(f,6) is the modulus of continuity of function f, then
for any B € Z%, |B| < r, we have

B _ DB |ﬂ| B
|DPf(z) - D B.(f,z)] < (2+A+ \/n—_—[——[) w(D fv\/mﬂ[
+ BUBL= 0y o, )
on o, where A = min{p, p?}.
l _
Proof Let Bf_l,,l(f,-) = ﬁﬂ(nT—I&)!DﬁBn(f,-). Then

|DPf(-) = DPBn(f,)| < |DPf(-) = Bn-yg(DPf,-)|
+ |Bn—|ﬂ|(Dﬁf, ) - Bg_|ﬁ|(f’ )| + lBg_|ﬁ|(f’) - DﬂBn—!ﬁl(f:')l‘ (8)

By (2), (3) and using standard inequality technique, one sees that, the first term does not

exceed
1

(1+ A)w(D f, ———). (9)
vn — B
1
On the other hand, by the mean value theorem, we have Aﬁf(a:aﬂme(,) : W[Dﬂf(za)
n
for some z,. Combine with (5) and notice that [|zo — zaf| < - l_mlﬂl, the second term
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becomes

| 2 (D°f(za) ~ D" f(z4)) Ba(2)|

la|=n—|5|
< ¥+ BazZaly, 50y 5)Baa)
lal=n-|8]
|8l s 1
< (1+ 2 u(Dff, ———), (10)
U P
1
the last inequality is obtained by choosing § = ———==. Furthermore,
vn - (8]
k k
H(l —zi)>1- Za:,
1=1 1=1
holds for all z; € [0, 1], therefore,
0 < I_E(n——l)...'fn—k-f-l) _ 1_(1__1_).”(1_ k——l)
n n n
k-1
. _ k(k-1)

Thus, by the derivative formula, the third term is going to be

- O o) = N ) X D) Bae)
' ' la|=n—18]
< (-l m s P Dy ooy
< A=y by, (1)
Combine (9) to (11) with (8), the theorem is proved. O

For the usual univariate forward difference operator A : Af(z) = f(x + 1) — f(z),
the following facts are well-known:

0 f 0<m«<n
nm: ) - 12
Az {n!, if m=n (12)

By induction, we can prove that

Al = (n + 1)!(1:+ %) (13)
and o\ 1
Atz™? = _(n-; ).(:1:2 + nz + 1“2'"(3'1 +1)). (14)
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d d
For any direction vector z = Zg.-v' with Zg,- = 0, we have

=0 =0
d at) u
sz(u) — tli—%f(u+tzi=(;§iv) f( )
o et (v - ) - f(w)
t—0 t

d d
= YD) =Y s Dif(w),

here, we use €', 1 = 1,...,d to denote the unit coordinate vectors in R? to distinguish
e € ROtL,
Now, for f € C"*?(c), we prove the following result.

Theorem 2.3 Suppose that f € C"**(g) and f € Z3. Let M; = maxici<a || DP*% f||oo
and M) = maxi<i j<a||DP1®*% f|lo. Then for any |B] < r
dMp? la

B iie)— BP . 1, e
ID f( ) Bn—|ﬁ|(f, )[ < 2(n_|ﬂ|)+|ﬂ{M1(2n+n_|ﬂl)

1 |a| 18| M,
2aq (L 2
+ 1] M2(2n + n-— |ﬂ|) 24n?’

where "
nPl{n — [B|)!
B£—|ﬂ|(f)z) = %DﬁBn(f’z)
Proof Since
|DPf(z) - By_5(f,2)] < |D?f(z) - Ba_ig)(D"f,2)|
+ |Bnoip(Df,2) ~ Bi_ g (f, 7).
from Theorem A, the first term is bounded by

dM p?
YIS (15)
2(n — |B))
To estimate the second term, we use Taylor expansion formula
lBl+1 . 1 Bie2
fly)= kZ:% fc—!Du—zf(I) + WD;,-: (z+0(y - ),

where 0 < 0 < 1.
Let £ = (&0, &1, -, €4) and ¢ = (¢0,¢1,- -+, ¢4) be the barycentric coordinates of z and
d

Y, and E_: (61)"' ’gd)i §: (gli"'agd)' Then Dy—z = Z(E - f_) 'CiD,', 50,
i=1
d k k
Di_,= (Z(E— f)~e‘D,-) = > ( )(E— $)PDP.
i=1

n
n€Z4, Inl=k
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For IB,’YG Zi, write ﬂ* = (O)ﬂly"'),@d)’ 7' = (0,‘71,"',’7d)~ Thus

Aﬁf(za+|ﬁ|cu) = Z:(_l)ﬁ_‘7 ( /,37 f(za+ﬁ'—‘y‘+h|e..)

1<8

1<p L k=0 i=1 n n- lﬂl
- 8 1 B -~ |Bla |8]4-2
+ —1)f-7 - -e;D; za), (16
where zo = Za + 0(Za4—v+|y|es — Za), for some 0 < § < 1, and & = (o1,---,a — d) for
a=(aj, ,a-d).

The first sum in (16) can be written as

ey k B n|Bla
- D" f(zq 1)1 _ e n
kgnkk!'n%(,,) f(z)gﬂ( ) (7)(/3 )
[8]+1 1 K
- g YA z_: ( n ) D" f(za)A? (2 - 20)"|2=0,
= Inl=%k
where z¢ = -nnTwl—l[—ﬂ& So, from (16), only the last two terms are nonzero. They are
_ 1 18] _ 1
h= T rrnz:%m ( n ) D f(za) A% (2 = 20)la=0 = [ D*f(z2),
and
Lk = ——i—— D a)A (2 - z=
i nHL(B] + 1)t l'ﬂzlﬁ:Hl( i J(za)A%(= = 20)"lz=0

: ‘ Bl +1 ) povet B nlfles
_ WZ( A )Dﬂ faR)(8 + (G - 2O

2n|ﬂ|a, ot
- 2n|ﬂl+l Z |,B| Dﬁ+ f(l‘a).

The second equality in Il holds because only the term n = 8 in the sum is nonzero and
by (12). In I3, we notice that only the terms for n = B + €' in the sum arc nonzero and
use (13) to get the second equality.

The second sum in (16)

= 1 18] + 2 b
b= R ) MZMIHZ( : )D"f(Za)A (& - 20)"]e=0
d

1 Bl +2 eited irei
A T B 2, P L T e
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If 1 # 7, .apply the fact (13), it becomes

_ 1 __2n|ﬂ|a,- , 2"[ﬁ|°‘1 Breitel o(
awereE 2%~ ST = )P )

If ¢+ = j, using the fact (14), it will be

_ (I nlfl )2a?— Bl aifi + ﬂ‘(w'“))pﬁ“e'f(z,_.).

2nlfl+2 n—18" " n-18l 12
Therefore,
_ Camipl o 2n0B) g
13 - 4n|ﬁ|+2 'Z#;(ﬂ' n— |ﬂl )(ﬂ n— |ﬂ| J)D f(za)
Wl e i8] Bi3Bi+ 1), g
n|ﬁ|+2 Z n— |,B| T n lﬂ|aiﬂi + T)D +2 f(2a)-
Using derivative formula and the above facts, we have
|Broyg|(D?f,2) = Bi_jp(f, @)l =] 3 (D°f(za) — n'AP f(204610)) Ba(2)|
Ial— ~18]
- o] 250 laf 12 | |BIM2
<18IM (5 + 1) + B Ma(g + St DR

Combine with (15), the conclusion follows.
We mention that if |3| = 0, then Theorem 2.3 will be Theorem A.

3. Bernstein polynomials with integral coefficients

Martinez [M] considered the derivative approximation using tensor product generaliza-
tion of Bernstein polynomials with integral coefficients. In this section, we shall investigate
Bernstein polynomials with integral coefficients on a simplex.

We use V, to denote the volume of the d-dimensional simplex ¢ = [v°,---,vd], for

= (v'i’ :1) ie VU - |det’( 0):] l|
Assoc1ated with Bernstem polynomial B,(f,:), we define the Bernstein polynomial
with integral coefficients as

s = 2 e ()]

where [-] represents the greatest integer function. Corresponding to D? B,(f,-) and with
the aid of derivative formula (5), we set

(DB = ¥ | Lgma  earian)| Bol)

la|=n—|8]
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As usual, the Ly-norm of f € Ly(o) is denoted by ||f||,.
We have the following L,-norm estimation for the approximation of (D" B,)(f, ).

Theorem 3.1 Let f € C"(0). Then for1 < p< oo, z €0,

I1D%1(2) = (DB (1,2l < V(2 + A+ Bl D7, )
181181 - 1) 5 1 d\, 1/p
+ B2 e+ =1+ (e s (D)

where A = min{p, p*}, and p is given by (1).
Proof Clearly, we have 0 < B, (f,z) — Bi(f,z) < gn(z) on o, where g,(z) = Z €.

laj=n

. n . .
Since ( o ) > n, if there exists 0 < a; < n, one gets

gn(z):Z£“+Zdje:-’sl > (")f°+if?s1+i£?-
ja|]=n =0 n |a|=n, 3 0<a;<n @ i=0 noi=o
Hence,
1 d 1 dw, iy
Ionte)lh < 117 + 160 = V23 + (o )

d'V,
(np+1)---(np + d)

Here, we used the fact, ||&|P = dVoB(np+1,d) =

, which can be

obtained by direct calculation and B(p, ¢) is Beta-function. Therefore, using Theorem 2.2

and

IDP f(z) = (DP Ba)*(f, 2)llp < IDP f(2) = DPBu(f,2)llp + llgn-jpi(=)lp,  (17)

the conclusion is obtained.
For p = oo, we prove.

Theorem 3.2 Suppose that f € C"(g) and

! .
(—n_nl—ﬂ!)!Aﬁ/(Ia'Hﬁlto) for aj=n—|B|, 7=0,1,---,d
are integers, then
D* — (DPBL)(f, 2)lloo 24 Pl ¢ Ayu(D? e
1D f(z) — ( (o)l < +W+ Jw( f\/ﬂ lﬂl)
18I(18] - 1), 8 1
+ oD oo + . (18)
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Proof By the assumption, we have

|DP Bu(f,2) = (D° Bp)*(f,2)| < gn-jg)(2) <

S| =

with the aid of (17) and Theorem 2.2, (18) is obtained. a
Let Byﬁ;f|ﬁ|(f>') denote the integral coefficient polynomial of Bg—lﬂl(f") which is de-
fined in Theorem 2.3. Similarly, by using Theorem 2.3 we can eatablish the following

Theorem 3.3 Let f € C"*%(0), B Z4 and |B| < r.
1) if 1 < p< oo, then

z (44
IDP10) = Byl (2 )l < V77 [H + 1M + {m)
20 (L la| 12 [|BIM, d\V, e
+ B Me( - + — |ﬂ‘) * oant ] + <((n ) (=B d)> ;

2) if p= oo, and the numbers nm'Aﬁf(a:aHme“) foraj =n—|8], 7=0,1,...,d are
integers, then
dMag? 4 2aBIM 1 [BIMy +2
2 16) 2n

1 |a| ‘,B'Mz
2 2

+ |8 My(— + =
| | 2(2 |9|) 24n?

IDP£() = B g (fi Moo <

As an application of Theorem 3.2, we have the following generalization of the Kan-
torovic theorem [K].

Corollary 3.1 Let f be a continuous function on o with f(v;) =0, then

E..(f) <2E.(f) + %

where E,(f) = infper, ||f — Plloos Ene(f) = infpex, . ||f — Plloc and 7, the space of all
polynomials of degree< n; m, . the space of all polynomials in 7, with integral coefficients.

Proof By the existence theorem, there is a polynomial p € 7,, such that

Ilf - p”oo = En(f).

Since f(vi) = 0, we get |p(v;)| < En(f). Now, let L(z) be a linear function satisfies
1:/(v,-) = p(v;), then ||L(z)|] < max, |L(v;)| < E.(f). Write p* = p(z) — L(z), so p*(v;) =0

and

/(=) —p7(2)| |/(z) = p(z)]| + |p(z) - p"(<)|

Ea(f) + IL(2)lleo < 2Ea(f)-

IN A
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On the other hand, {£*},4|=,, forms a basis of 7,. So, we have the expression

p(z) = Z ca&* for some c4.
la|=n
But, p*(v;) = 0 implies ¢, = 0 for « = ne;, 1 =0,1,...,n. Therefore,

p(z) = Z ca €.

|a|=n,a;<n

. 1
H ¥ — p*t < @< Z. Th
ence, |p*(z) — p"¢(z)| < Z £* < - us,

|aj=n,a;<n

1) = p(2)] < 11(=) - " (@) + Ip" (=) - p"*(2)] < 2Ba()) + 1,

the theorem is proved. O
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