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1. Introduction and definitions

Let A(n) denote the class of functions of the form

o o]
f(Z)=Z+ Z akzks n€N={l,2,3,--'} (1)
k=n+1
regular in the unit disk A = {z: |z] < 1}.
A function f(z) belonging to the class A(n) is said to be in the class S$*(n) if and only
if
Re {"f((;)} >0 (z€A).

Further, a function f(z) belonging to the class A(n) is said to be in the class K(n) if and
only if
Zf"(

f'(2)
- It is well known that f € K(n) if and only if zf'(z) € S*(n) and K(n) C S*(n).
For any real number a let the operator I* operating on f € A(n) be defined by

Re(1+ LGy 50 (zea)

(o]
I*f(z) =z + Z (k-i_l ~g,zk,
k=n+1
A function f(z) given by (1) is said te be in the class S*(n,a) if I*f(z) € S*(n) and
is said to be in the class K(n,a) if I* f(z) € K(n).
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In this paper we investigate certain properties of the classes S*(n,a) and K(n,a).
Methods used here are similar to those in [1].

2. The classes S*(n,a) and K(n, o)
We need the following result due to Miller and Mocanu [2].

Lemma Let ¢(u,v) be a complex valued function, ¢ : D — C,D C C x C(C the complex
plane) and let u = u; + iuy, v = v; + 1v,. Suppose that the function ¢(u,v) satisfies the
following conditions:

(i) ¢(u,v) is continuous in D;

(ii) (1,0) € D and Re {¢(1,0)} > 0;

(iii) for all ({uz,v1) € D and such that vy < —n(1 + u2)/2, Re{#(ius,v1)} < 0.
Let p(z) = 14+ pnz"+ppt12™+ 1+« be regular in the unit disk such that (p(z), zp'(2)) € D
for all z € A. If Re{¢(p(2),2p'(2))} > 0(z € A), then Re{p(z)} > 0(z € A).

Using the above lemma we prove.
Theorem 1 For any real number o, S*(n,a) C S*(n,a + 1).

Proof Let f(z) € S*(n, ). Define the function p(z) by

z a+1 > !
e =) (2

Then p(z) = I + pnz"™ + ppy12™t? + -+ - is regular in A. So, using the identity (easy to
verify)

Z(Ia+lf(z))l — 21af(z) - Ia+1f(z)
(2) may be written as

1°f(z) 1
(s 5 (1+p(2)). (3)

Differentiating (3) logarithmically we obtain

@) oy, P

1f(z) T 14 p(2)
- (17 (2))’ (2)
z z _ zp'(z
RG{W} = RC{p(Z) + 1 +p(z)} >0
Let p(2) = u = u; + tuy, zp'(2) = v = v} + tvy, and $(u,v) = u + % Then

2)
1+wu
(i) é(u,v) is continuous in D = (C - {-1} x C);

(i) (1,0) € D and Re{#(1,0)} =1 > 0;
(iii) for all (fuy,v1) € D and such that vy < —n(1 + u2)/2,

) v1 n(1 + uj)
R ; = _ < — < —
etd(iuz, vi)) T+uf = 2(1+ud) ~
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Thus the funtion ¢(u,v) satisfies the conditions of the above Lemma. It follows that

Re : z(I°tf(2) ] ;
e{p(z)} > 0. That is Re{ T (2) } >0 (z€ A). Hence f € S™(n,a+ 1).

Theorem 2 For any real number o, K(n,a) C K(n,a+ 1)

Proof Observe that

fEK(na) & I[°f(z)e K(n) e z(I°f(2)) € S*(n) & [*(zf'(2)) € S™(n)
& zfi(2) € ST (n,a) = 2f'(2) € ST(n,a + 1) & [“THzf'(2)) € S$™(n)
o 2(I*Mf(2)) €S (n) & I*Mf(2) € K(n) & f(z) € K(n,a +1).

Theorem 3 If the function f(z) defined by (1) is in the class S*(n,a), then

Re{([aj;(Z))ﬂ_l} > %_ﬂ:'ﬁ (ZE A)

where 1 < 8 < (n+2)/2.

Corollary If the function f(z) defined by (1) is in the class K(n,a), then
Re{(I*/(2))}'' > s (2€ A
A IENYV > g (e d)

where 1 < 8 < (n+ 2)/2. Proofs of Theorem 3 and its corollary are similar to those of

analogous results in [1].
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