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Concerning a Kind of Integrals of Complex-Valued
Functions of Large Numbers *
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Abstract Here presented are two limit theorems for a kind of integrals involving
complex-valued functions of large numbers. The form of integrals may be regarded
as a natural generalization of those integrals occured in the probability limit theorems
of Chung and Erdds. Our main result is Theorem 2 whose proof rests upon some known
results of [1] and makes an extentive use of Bonnet’s second mean value theorem and
related analytic techniques.
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1. Introduction

Let X be a random variable which assumes only integer values

P(X:]C)Zpk, pr > 0, Zpk:l.

%

It is assumed that the sequence {pi}(—oo < k < o) satisfies the usual conditions for the
first moment and the mean

S Ik

The characteristic function of the distribution function of X is given by

P < 00, Z kp, = 0. (0)

1) = pee™, (i = Vo) 1)

Consider the sum of n random variables S, = ) T Xi, where the X}’s are mutually
independent, each having the same distribution as X. Then for every integer a,

P(Sy=a) = /” (f(2))"e o= da. 2)

27 J_»
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One of the two main results of [1] is the following theorem (cf. Theorem 3.1, loc. cit.)
Jim P(S, =a)/P(S, =d') =1, (3)

where a and a' are any two given integers.

As may be seen, f'(0) = 0,max;|f(z)] = f(0) = 1 and |f(z)|* is a peak function
rapidly decreasing away from z = 0 when n becomes large. Some precise desription of
the behavior of |f(z)|™ will be given by some lemmas (cf. §3). Notice that the condition
(0) guarantees merely the existence of the first derivative f'(z), but not the existence of
f"(z) at z = 0. Thus, neither the classical Laplace asymptotic method nor the method
of stationary phase (see, e.g., those methods expounded in some detail in Olver’s book [4]
or in our book [3])-can be used to estimate the integral on the RHS of (2) for n — oo.
In fact, the limit relation (3) under condition (0) was proved using a kind of probabilistic
argument (cf. loc. cit.). This may be the reason why one of the authors of [1] has once
again posed the problem [2] of seeking a purely analytic proof of (3). As we have learned,
this problem is still open till now.

Let us denote

ha) = [ U@ ae)ds, (4

where g(z) is a continuous function. Suppose that h(z) is also a continuous function
defined on [—m, ] with h(0) # 0. From some viewpoint of asymptotics, Roderick Wong
(Professor of Mathematics at the University of Manitoba, Canada) has conceived and
remarked that the limit relation
i Jn(f:9) _ 9(0) (5)
n—oo J,(f,h)  h(0)

may be true under certain general conditions about f,g and h. This is actually one of the
motivations for the present investigation. However, it seems very difficult or even impos-
sible to extend Chung-Erdos’result (3) to the general form (5) under the sole condition
(0), even using (3) itself as one of our lemmas. What we can show is that for any two
functions g(z) and h(z), analytic in a neighborhood of z = 0 with ¢'(0) = k'(0) = 0 and
h(0) # 0, the limit relation (5) is true if f(z) satisfies the condition (0) plus an additional
supposition so-called the“uniform boundedness condition” for [(f(z))"dz. Precise state-

ments will be given in the next section.
2. Statement of Theorems

Hereafter we will use A, A} and A, to denote some unspecified positive constants, not
depending on any variable parameters related.

If the characteristic function f(z) is symmetrical, viz. py = p_i, so that it becomes a
real-valued function, then everything becomes greatly simplified, and an easier result may
be stated as follows

Theorem 1 Let f(z) be symmetrical, and let g(z) be a complex-valued continuous
function defined on [—n, x| with g(0) # 0. Then we have

lim n[Jn(f,9)| = oo (6)
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Jim VAlJn(f,0)] < 4. ™

Clearly the results given by Theorem 1 and Theorem 2.1 of [1] just correspond to the case
g(z) = e7*°=. The proof of (6) and (7) will be omittedd here, since it is very similar to
that of the original results in [1]. So we will confine ourselves to proving a much more
difficult result Theorem 2, which will be stated afterwards.

Hence-forth we consider the general case where f(z} may be nct symmetrical, but
subject to the condition (0).

Definition Let A,(t) denote the integral average of the real part R(f(z))™ on (—t,t) C
(—m,x), namely

t
(i) salt) = [ U@z
Then A,(t) is said to have the “uniform b(gltlndedness property” ((UB)- property), if for
every small t > 0, the following inequality holds uniformly for all large n and every t' with
o<t <t:
(i) 0 < Ap(t")/An(t) < A.

As we shall see later (cf. §3), A, (t) is positive for all sufficiently large n, and it is
asymptotically equivalent to [”_(f(z))"dz(n — o0), since R(f(z))" is also a peak function.
Thus the geometrical meaning of (i) and (ii) appears quite apparent.

Theorem 2 Let f(z) satisfy the condition (0) and let A,(t) have the (UB)-property.
If g(z) is a real-valued function, continuous on |—,n| and analytic in a neighborhood of
z = 0 with z = 0 as its stationary point, viz. ¢'(0) = 0, then

Jn(f,g)

Im —

n—oo Jn(f: l)

= 9(0). (8)

This theorem implies the following tow consequences:

Corollary 1 Let g,(z) and g2(z) be real continuous functions defined on |—n, ] and
satisfy the same conditions as that for g(z) of Theorem 2. Then the limit relation (8)
holds for the complex- valued function g(z) = g1(z) -+ 1g2(z).

Corollary 2 Let g(z) = g1(z) + ig2(z) and h(z) = hy(z) + thy(z) be two complex-valued
functions with g1, g2, h1 and hy satisflying the same conditions as that for g(z) of Theorem
2. Then there holds the limit relation (5) with h(0) # 0.

It is easily seen that (5) implies the form of (3) by taking g(z) = € *%* + 1az and
h(z) = e7*'% 4 ia'z and showing J.(f,1az)/Jn(f,1) — O(n — o).

3. Lemmas with Some Consequences

Lemma 1 For f(z) defined by (1) we have

.o k—7)z
1@ =1- Y pupy 2B 0%,
k#
so that |f(z)|? is an even function.
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Lemma 2 There exist bounding functions for |f(z)|?, namely

(1 - Ayz) <|f(z)]* < (1 - Apz?), (-7 <z < 7).

Lemma 3 Under the conditin (0) we have for every small number € > 0
P(Sp=a)2>(1-¢"

il n > N(e,a),a being an integer.

Both Lemma 1 and Lemma 2 are easily proved using elementary computations (cf.
Proof of Theorem 1 in [1]). Lemma 3 is precisely Theorem 2.2 of 1], of which the first
proof was given by W.H.J. Fuchs (see, e.g., page 6 of [1]).

Corollary 3 For every small ¢ > 0, we have

€

T~ [ (f@)dz>0 (2 ) (9)

—€

Proof For any small € > 0, by Lemma 2 we find
f(z))*dz < / 1 - Az?)Y2dz < (27)(1 — Ac?)™/?
() (1A < )1 Al

< (2m)(1 - %Ae2)" =of(1 - (%Ae2)2)"), (n — oc).

Thus one may choose €, = (3Ae*)?, so that by Lemma 3, we have for n > N(e;) with

-

[Lu@ra=[ [ ez e -adr

Hence it follows that
[ @i~ [ gxra (- ). o

Let us denote

1(z) = 1@, 6(z) = arg f(z) = arccg(f;%)),

—

where p(z) = Y% prsinkz and q(z) = 3% pk cos kz. Obviously 6(z) is an odd function,
0(—z) = —0(z), and so is the function sin nf(z). Thus one may write, for every small ¢ > 0,

/e (f(z))dz = / 1 ()" (cos n6(x) + i sin nd(z))dz

—€ —€
€

= [ @I cosni(a)ds = [ R(s(z))d (10)

—€ —€
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From (9) and (10) it is clear that [ R(f(z))"dz is always a positive quantity repre-
senting the principal part of [7_(f(z))"dz for n large. This is consistent with (ii) for the
(UB)- property.

Lemma 4 For every small € > 0 we have for n — oo

€ €
/ | f|"* cos nb(z) cos axdz ~ |f|* cos nf(z)dz (11)

/_Z |f|™ sin nf(z) sin azdz = o </j€ [f]" cos n0(z)d:z:> , (12)

where a is any integer, not zero.

Proof From (3) and Corollary 3 it follows that

/w (f(z))"e"**dz ~ /” (f(z))"dz ~ /E (f(z))"dz, (n — o).

- - —€

Using Lemmas 2 and 3, one ecasily gets
| U@yrendn~ [ (r@)ea
Thus it follows that (via (10))

/€ |f(2){"(cos nb(z) + isin nb(z))(cos ax + 7sin az)dz ~ ‘ |f{z)|" cosnb(z)dz. (13}

—e —€

Since cos nf(z) cos az and sin nf(z) sin az are even functions, while cos nf(z) sin az and
sin nd(z) cos az are odd functions, it is clear that (12) may be rewritten in the form

€ € €
/ |fI™ cosnb(z) cos axdz — / |fI" sinnf(z)sinazdz ~ / |fI* cosnf(z)dz.  (14)
—€ —€ —€
Changing a into —a, one gets

€
/ |fI™ cos nf(z) cos azdz +/

—€ —€

€ €

|fI" sinnf(z) sin azdz ~ / |f|" cosnb(z)dz.  (14)
Thus, comparing (14)' with (14), one obtains (11) and (12). O

We will make use of the Welerstrass form of Bonnet’s mean value theorem: Let F(z)
be continuous on [a,b] and let p(z) be monotonic in (a,b). Then thereis a {,a < £ < b,
such that

b 13 b
/ F(z)p(z)dz = go(a)/ F(z)dz + o(b) / F(z)dz,
a a ¢
where the RHS of the equation will consist of one term if p(a) = 0.
4. Proof of Theorem 2

Our proof consists of two usual steps. Firstly, for every given small ¢ > 0, we shall
establish certain order relations (involving €) for n — co. The second step is to get the
desired result by making ¢ — 0.
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As may be observed, in order to prove Theorem 2, it suffices to show that, for every
given € > O there hold the following relations, when n — oo,

€

[ 111 cosna(@)gta)dz = (50) + 0(6) [ 111" cosnt(z)dz (15)

—¢ —€

jlpi [f|"sinnbd(z)g(z)dz = O(¢) /E |f|* cos nl(z)dz (16)

—€

where the factors involved in the order terms O(¢) are bounded for all large n, i.e., |O(¢)| <
Ace for large n. Indeed, a linear combination of (15) and (16) gives
€

[ iren@g@yiz = o)+ 0@ [ 111" cosnt(z)dz

—€

_ [Q(O)+O(€)]/ Ij-lneinf?(z)dz
—€
This implies the following with the aid of Lemma 2 and Corollary 3

“l—l?n““t]n(f)g) S
= Ju(f,1)

19(0) =07 (9)] < 9(0) + 07 (4],

where O (€} > 0. Finally (8) will be obtained by letting e — 0.
In what follows we will verify (15) and (16). Let us denote

p(z) = g(z) - ¢(0J, (17)

where ©(z) is not a constant, with ©(0) = 0 and ¢'(0) = 0. Since g(z) is analytic in a
neighborhood of = = 0, it is clear that ¢'(z) should have a definite sign within a small
interval (0, ¢). The same is true for ¢'(z) with ¢(z) being defined by
T , T
v(e) = 25 (2 £ 0), w(0) = tim £EL

: 2T o, (18)
sin axr z—0 sln ax

Evidently (15) and (16) are respectively equivalent to the following

/6 |fI" cos nd(z)p(z)dz = O(¢) /: | f|™ sin né(z)dz (20)

—€

/_l |fI" sin nf(z)p(z)dz = Ofe) /i [f]" cosnf(z)dz (19)

Replacing ¢(z) by ¢(z) + ¢(—z) and ¢(z) — p(—z) respectively, one may see that (19)
and (20) can be expressed as the integrals over the interval [0, €], so that in order to prove
(15)- (16) it suffices to verify the following relations (with |O(€)| < Ae for large n)

l
S)
=
ey
=

/OE If|" cos nd(z)p(z)dz (21)
/OE || sin n6(z)p(z)dz = O(€)Bn(e) (22)
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where ®,(z) is defined by

t
() = @ (1) ;:/O 17(2)[" cos n#z)dz, (0<t< ).

Verification of (21) For the integral (21), using iutegration by parts, we have

/06 |f|" cos nb(z)p(z)dz = /0 ©(z)d®(z)

= [@(@)e(@)ly ~ [ D))z = J1 = .
Since p(0) = '(0) = 0, it follows that
Ji = p()@(€) = O(*)®(€) = O(€)P(e).

For the integral J, since ¢'(z) is monotonic in (0,¢) with ©'(0) = 0, it is seen that an
application of Bonnet’s mean value theorem gives

J2 = ¢'(€) ;@(:::)da:, (0 < 8, = 681(n) < ¢).

Notice that ®(z) = [!R(f(z))"dz = IAL(t), so that it possesses the (PB)-property.
Consequently J; may be estimated as follows

Jr = ple)(e=6)Pn(€), (b1 < €= &< e
= 0(6)0(e)O(Dn () = O() (),

where the (UB)-property of ®,(t) ensures that the factors implied in the O's are bounded
uniformly for all large n. Hence in conclusion Jy = J, = O(€)®,(¢), and (21) is proved.

Verification of (22) Using the function ¢(z) defined by (18), we may rewrite (22) in
the form .
/ /(z)!" sinnd(x) sin axyp(z)dz = O(c)P,(¢) (22)
0

Let us introduce the function
U(t) = ¥,(t) == /Ot |f(z)|"(cos n(z) — sin0(z)sinaz)dz, (0 <t <e).
Notice that (12) implies that for every t > 0,
¥() ~ [ 171" cosnd(z)dz = @(0), (0~ o0),
Le., Uu(t) = [1+ o(1)]®,(t) ~ 1A, (t). Morcover, for 0 < z <t — 04

|f(z)|"|sinn#(z)sinaz| < {sinaz| — 0,
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where the limit passage going to zero is independent of n. Thus ¥,(t) also enjoy the
(UB)-property for small ¢ > 0 and large n.

Just like ¢'{z), the function ¢'(z) is monotonic in the small interval (0, €), with ¢'(z) —
¢'(0) being zero for z = 0. Thus, using integration by parts and Bonnet’s theorem, and
recalling the (UB)- property of ®,(t) we obtain

/: |f(z)|" cos n8(z)(z)dz = /: Y(z)d®(z)
= [@a (@) (=) - / @n(@)¥'(2) ~ ¥ (O)de + [ @a(e)day (0)dz

= 2u(09(0) ~ V(@) [ @a(a)dz + 9 (0)Pa(En)

= Pn(c)p(€)/sin ae — () (e = 82)@n(&7) + ¥'(0)ePn(én)

= @n(€)O(e) ~ O(1)O()O(Pn(e)) + O()O(®n(c))

=0(e)®Pnle), (0< &, <8 <& <e) (23)

where in the last order term O(e) the factor is bounded for all large n.
Similary, using integration by parts and Bonnet’s theorem again, and making use of
the (UB)-property of ¥,(t), we get

/06 | f|*[cos nf(z) — sin nb(z) sin az]y(z)dz = /OE Y(z)d¥,(z)

= [Wa(@)(@)fs - [ $a(@)¥/(2) - ¥ (0ldz + 9'(0) [ Bn(e)d
0(0(¥n(e)) = O()2a(0) (24)

(
Finally, a comparison of (23) with (24) yields (22), so that (22) is verified. This completes
the proof of Theorem 2. O

Remark 1 Worth mentioning is that Lemima 4 is logically equivalent to (3), and that the
old open problem posed by Chung [2] may be resolved if (12) could be given an independent
proof without any reference to (3) or any probabilistic argument.

Remark 2 As an open question, it is not yet known whether the (UB)- property of
Ap(t) can be deduced from the condition (0) or not. We conjecture that the answer may
be negative. Perhaps a certain counterexample may be constructed by a special choice of
the seequence {p;}(—o0 < k < 00).
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