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Abstract It is proved that if the generalized entire solution u of the equation (1)
satisfies u € Wlloc(E”) N L,(E™) for an appropriate a, it must be zero.
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Consider on the n-dimensional Euclidean space E™ the following elliptic equation:
div A(z,u,Vu) = B(z,u,Vu), (1)

where A(z,u, ) and B(z,u,£) are defined on E™ x E! x E™, measurable with respect
to = for fixed u and £, continuous with respect to u and ¢ for fixed z and satisfying the
structural conditions:
£-Az,u, &) > [€F, 1
|Az,u, &) < w[€fP7E, «

|B(z,u, £)| < b(z)|€]”, b(z) € L(E™)and p-1<y<p-1+p/n

<p<n

respectively. As usual we call u a generalized solution of (1) if for any B, = {|z| < r},
there hold u € W) (B,) and

0
i {VvA(z,u,Vu) + vB(z,u,Vu)}dr =0, Vve WPI(B,) (1)
In the case v = p — 1 and under the supplementry assumption

b(z)| = O(|| ™) as |z| > .

We see from Liang!!l that if the generalized entire solution u of (1) is bounded globally
on E", then it must be a constant. The same result is proved by Yu-Liang in [2] for a
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one-sided bounded solution. In Yu-Liang [*l, other type Liouville theorem is given, namely,
if a generalized solution of (1) satisfies u € L,(E™) for an arbitaray a > 0, then u must be
trivial. The latter result was obtained carly by T.Kilpeldinen in [4] for A(z,u, £) = A(z, )
and B(z,u,£) =0 and

1
u < Wp,IOC

(E™) N Ly-(E™),p" = np/(n—p),1 <p<n
Without any restriction on b(z) we now prove the following:

Theorem Let the condition (2) be satisfied and u a generalized entire solution of (1). If
u € Lo(R"™) with

a > 0 may be arbitarary as~y —p— 1, (3)
a=n(y+1-p)/(p~7) asp-1<y<p-1+p/n,
the u=0.

Proof Let ky > O be arbitrary and ¢ = 6(ko) > O to be determinated later. By the
assumption on u we take B = R(kg) > 1 large enough that

lu|*dz < 0 asr > R. (4)
BGr/Br

Let ro,ry satisfying 0 < ry < ry < r be arbitrary and ¢(z) = ¢(|z|) a piecewise linear
continuous function of |z| satisfying

(2) = 0 as |z| < 2r —rgor |z| > 4r + 1o,
s = Las 2r —r; < |z| < Ar+ry.

Then |V¢(z)] < (ro—ry)~!. Let k > Oand u* = max(u,0). Take v = ¢?(u—k)* € W) (Bs,)
as a test function and insert it into (1)' (in which B, is replaced by Bs,) we get that

[ owarassc [ (- DIV P (- BTz, (3)
A(k,fﬂ) A(k.vr”)

where A(k,r0) = (Barsr,/B2r—r, )N {u > k} is the eflective domain of the integrations and
C 1s the constant depending only on n,p,x and the norm of b(z) in L (E™). It follows
from (5) by using the Young inequality that

— k P
/ PIVulPdz < c/ ("2 4 (= k)75 Y,
A(k,r“) A(k,r“) 7'0 - Tl

where the constant C is independent of k,ry and r; (the same is the following). From the
above inequality and Sobolev imbedding theorem we get

([ u=kaap <o [ V(- kP
Alk,ry) Alk,ro)

ok .
sc/ U275 4 (u - k)75 )de (6)
Alk,ry) - n

To
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We distinguish tree cases. (i) The case p—1 < v < p—1+p/n; (ii) The case y = p—1+p/n;
(i11) The case y=p — 1.
In the first case by the interpolation inequality we have

[ e ek T e ka0
A(k,ry) Alk,ry) Alk,ro)

(p=/p=Q0-A)/a+r/p ie, A= (1/a=1+7/p)/(1/a—1/p").
The assumption a = n(y + 1 — p)/(p — 7) implies

1-X2 p
—— =p/n.
a p—7y

A=p-—vand
Combining with (6), (7) and (4) yields
([ (u-wdapt
Alk,ry)

<c{o-n)7 [

(u - k)Pdz + op/"(/ (u— k)P dz)P/P"}, (8)
Alk,ro)

Ak,ro)

If we take @ such that CoP/™ < %, then, in virure of the arbitrariness of rg,r; we deduce

from (8) (by the use of a lemma of Giaquinta-Giustil®l) that
(/ (u— k)P de)?/?" < C(ro - rl)—v/ (u—k)Pdz, VO<r <ro<r (9)
A(k,rl) A(k,r“)
If a > p, it follows from (9) that
[ ek <At ) (e kpdn
Alk,ry) Alk,ry)

< ClA(k, ro)[*/™ (ro — r1) " ® /A(k (= Ky (10)

If 0 < @ < p, by the interpolation inequality we get from (9) that

([ (- pptdpl
A(k,ry)

< C(ro—r)(

(u - k)adz)p(l—h)/a(/ (u— k)p'd:c)’\”’/”'
A(k,ro)

Alk,ra)

1

<o @R s o - )TN (e R, (1)
Alk,ry) Alk,ry)

where A\; = (1/a—1/p)/(1/a - 1/p*) € (0,1).

For the same reason as above, the first term on the right hand side of (11) can be
neglected, then, it follows

/ (u—k)*dz < C[|A(k, o)l (ro — i) "] 17o/P") / (u— k)*dz. (10)
Alk,ry) Alk,ry)
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We now prove that (10) and (10)' imply
vraip,, /B, maxu < 2ko, (12)

respectively. For this take for m =0,1,2,---

km = 2ko — ko /2™ 1 = /2™ and Jp = / (u— km)*dz.
Alkm,rm)

Replace k by km+1, and ro,r1 by ryn, rme41, respectively, we have

/n a
-k, @ om+1
Jm41 < C / ]—u—————ladz Jm
A(km+l|rvu) km+1 - km r

2

2m+l ’:_. 2m+1 o
C( k ) ( ) I, m=0,1,2,- (13)
0 r

(4) implies Jo < 8. Suppose we have proved
Jm < 6™8. (14)
Then, combining (13) with (14), we obtain
Tms1 < JmC2etaln) (gp-aya/n po(gsa/nga(itajn)ym,
Because of R > 1, if we take § = 0(ko) > O satisfying
C2a(1+a/n)(0k5a)a/n < 6 and sa/noa(ita/n) _ 1

Then (14) holds also for m+ 1. By induction (14) holds for all positive integers. It follows
that

0= lim J,, = / (u - 2ko)%dz = / |(u - 2ko)t|*dz,
A(2k0,0)

m—oo B‘lv/B'_’r

and then (12) holds. By the weak maximum principle for generalized solutions of elliptic
equations (see Yu-Liang[G]) we have

vraig,, max u” < vraigp,, maxu® < vraip,,/p, maxu® < 2ko. (15)

From the proof above we see that the results hold as r increases. Therefore (15) implies
ut =0 on E™ owing to the arbitrariness of kg and r. Similarly, we can prove (—u)* = 0.
Thus, the conclusion of the theorem is ture for the case of p—1 <y <p—-1+p/n.

In the second case, ¥y = p — 1 + p/n, we have

p'=p/lp-v=n(v+1-p)/lp-7) =a
It follows from (6) that

(/ (v — k)2dz)P/* < C{(ro— rl)"p|A(k,ro)|1_"/°‘(/ (u — k)*dz)?/
Alk,ry) A(k,ro)

* /:Q(k,ru)(u ~ K)7de} 19)
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Now, replacing (13) we have

om+1\? u—k 1-p/a
Wy o< o\ = / —" |*dz JEle 4 g,
T L( " ) (Aumﬂ.r.,.)'kmﬂ—km' )

gm+1\P [ gm+1 1-p/a
< CL( > ( ) 41| Jp, m=0,1,2,---. (17)

r ko

On account of r > R > 1, from (17) we deduce again (12). The conclusion of the theorem

is also ture for y = p — 1+ p/n.
Finally we consider the case v = p — 1. Let a € (0,p). It follows from (6)

(/ (u—k)p'da:)p/p.
Alk,ry)

<Cllo—r) P H1U([  (u= k)i (k) dmpel

Alk,ro) A(k,ro)
<2 (e KPP 1 Cllro ) (19)
2 J A(k,ra)
+1]p"(1/a_l/p.)(/ (u—k)adz:)p/o‘, 0<r  <rg<r, (19)
Alk,ry)

where A; is the same as in (11). In virtue of the arbitrariness of rg and ry (18) implies

([ (u-wpaspl
A(Ic,rl)

<Clro—r) '+ 1]’)"(1/&_1/”‘)(/ (u - k)ad:c)p/a, 0<r <rg<r.
Alk,ro)

Repeating the argument above we obtain (12) again. The conclusion of the theorem is
also ture fory=p - 1. Q. E. D.
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