椭圆型方程广义解Liouville型定理的一个注

摘 要

在 E^n 考虑椭圆方程

$$\operatorname{div} \stackrel{
ightharpoonup}{A}(x,u,\nabla u)=B(x,u,\nabla u),$$

其 \overrightarrow{P}_A, B 满足如下的结构条件:

$$egin{aligned} \xi \cdot A(x,u,\xi) &\geq |\xi|^p, & 1$$

 $|B(x,u,\xi)| \leq b(x)|\xi|^{\gamma}, b(x) \in L_{\infty}(E^n), p-1 \leq \gamma \leq p-1+p/n.$

本文证明如果广义整解 $u \in W^1_{p, \text{loc}}(E^n) \cap L_{\alpha}(E^n)$, 其中

$$\left\{ \begin{array}{ll} \alpha > 0 \ \overline{\eta} \ \text{以任意} & \text{ } \underline{ } \underline{ } \underline{ } \underline{ } \gamma = p-1, \\ \alpha = n(\gamma+1-p)/(p-\gamma) & \text{ } \underline{ } \underline{ } \underline{ } \underline{ } p-1 < \gamma \leq p-1+\frac{p}{n}, \end{array} \right.$$

- 232 --

那么 $u \equiv 0$.

A Note on Liouville Type Theorem to Generalized Solutions of Elliptic Equations*

Liang Xiting
(Dept. of Math., Zhongshan Univ, Guangzhou, 510275)

Liang Xuexin
(Dept. of Math., Huaqiao Univ, Quanzhou, 362011)

Abstract It is proved that if the generalized entire solution u of the equation (1) satisfies $u \in W^1_{p, loc}(E^n) \cap L_a(E^n)$ for an appropriate α , it must be zero.

Keywords elliptic equation, entire solution, Liouville theorem

Classification AMS(1991) 35B05/CCL O175.25

Consider on the n-dimensional Euclidean space E^n the following elliptic equation:

$$\operatorname{div} \underline{A}(x, u, \nabla u) = B(x, u, \nabla u), \tag{1}$$

where $\underline{A}(x, u, \xi)$ and $B(x, u, \xi)$ are defined on $E^n \times E^1 \times E^n$, measurable with respect to x for fixed u and ξ , continuous with respect to u and ξ for fixed x and satisfying the structural conditions:

$$\begin{aligned} \xi \cdot \underline{A}(x, u, \xi) &\geq |\xi|^p, & 1$$

$$|B(x,u,\xi)| \leq b(x)|\xi|^{\gamma}$$
, $b(x) \in L_{\infty}(E^n)$ and $p-1 \leq \gamma \leq p-1+p/n$

respectively. As usual we call u a generalized solution of (1) if for any $B_r = \{|x| < r\}$, there hold $u \in W^1_p(B_r)$ and

$$\int_{B_r} \{ \nabla v \underline{A}(x, u, \nabla u) + v B(x, u, \nabla u) \} dx = 0, \quad \forall v \in W_p^1(B_r)$$
 (1)'

In the case $\gamma = p - 1$ and under the supplementry assumption

$$|b(x)| = O(|x|^{-1})$$
 as $|x| \to \infty$.

We see from Liang^[1] that if the generalized entire solution u of (1) is bounded globally on E^n , then it must be a constant. The same result is proved by Yu-Liang in [2] for a

^{*}Received Dec.1, 1992.

one-sided bounded solution. In Yu-Liang ^[3], other type Liouville theorem is given, namely, if a generalized solution of (1) satisfies $u \in L_{\alpha}(E^n)$ for an arbitaray $\alpha > 0$, then u must be trivial. The latter result was obtained early by T.Kilpeläinen in [4] for $\underline{A}(x, u, \xi) = \underline{A}(x, \xi)$ and $B(x, u, \xi) \equiv 0$ and

$$u \in W^1_{p, \mathrm{loc}}(E^n) \cap L_{p^*}(E^n), p^* = np/(n-p), 1$$

Without any restriction on b(x) we now prove the following:

Theorem Let the condition (2) be satisfied and u a generalized entire solution of (1). If $u \in L_{\alpha}(\mathbb{R}^n)$ with

$$\alpha > 0$$
 may be arbitarary as $\gamma - p - 1$,
 $\alpha = n(\gamma + 1 - p)/(p - \gamma)$ as $p - 1 < \gamma \le p - 1 + p/n$, (3)

the $u \equiv 0$.

Proof Let $k_0 > 0$ be arbitrary and $\theta = \theta(k_0) > 0$ to be determinated later. By the assumption on u we take $R = R(k_0) > 1$ large enough that

$$\int_{B_{t,r}/B_r} |u|^{\alpha} dx \le \theta \text{ as } r \ge R.$$
 (4)

Let r_0, r_1 satisfying $0 \le r_1 < r_0 \le r$ be arbitrary and $\zeta(x) = \zeta(|x|)$ a piecewise linear continuous function of |x| satisfying

$$\varsigma(x) = \left\{ egin{array}{l} 0 ext{ as } |x| \leq 2r - r_0 ext{ or } |x| \geq 4r + r_0, \ 1 ext{ as } 2r - r_1 \leq |x| \leq 4r + r_1. \end{array}
ight.$$

Then $|\nabla \zeta(x)| \leq (r_0 - r_1)^{-1}$. Let k > 0 and $u^+ = \max(u, 0)$. Take $v = \zeta^p(u - k)^+ \in W^1_p(B_{5r})$ as a test function and insert it into (1)' (in which B_r is replaced by B_{5r}) we get that

$$\int_{A(k,r_0)} \varsigma^p |\nabla u|^p dx \le C \int_{A(k,r_0)} \{(u-k)|\nabla \varsigma| \varsigma^{p-1} |\nabla u|^{p-1} + (u-k)\varsigma^p |\nabla u|^{\gamma}\} dx, \quad (5)$$

where $A(k, r_0) = (B_{4r+r_0}/B_{2r-r_0}) \cap \{u > k\}$ is the effective domain of the integrations and C is the constant depending only on n, p, κ and the norm of b(x) in $L_{\infty}(E^n)$. It follows from (5) by using the Young inequality that

$$\int_{A(k,r_0)} arsigns^p |
abla u|^p dx \leq C \int_{A(k,r_0)} \{|rac{u-k}{r_0-r_1}|^p + (u-k)^{rac{p}{p-\gamma}}\} dx,$$

where the constant C is independent of k, r_0 and r_1 (the same is the following). From the above inequality and Sobolev imbedding theorem we get

$$\left(\int_{A(k,r_{1})} |u-k|^{p^{*}} dx\right)^{p/p^{*}} \leq C \int_{A(k,r_{0})} |\nabla(\varsigma(u-k)^{+})|^{p} dx
\leq C \int_{A(k,r_{0})} \left\{ \left| \frac{u-k}{r_{0}-r_{1}} \right|^{p} + (u-k)^{\frac{p}{p-\gamma}} \right\} dx.$$
(6)

We distinguish tree cases. (i) The case $p-1 < \gamma < p-1+p/n$; (ii) The case $\gamma = p-1+p/n$; (iii) The case $\gamma = p-1$.

In the first case by the interpolation inequality we have

$$\int_{A(k,r_0)} |u-k|^{\frac{p}{p-\gamma}} dx \leq \left(\int_{A(k,r_0)} |u-k|^{\alpha} dx \right)^{\frac{1-\lambda}{\alpha} \frac{p}{p-\gamma}} \left(\int_{A(k,r_0)} |u-k|^{p^*} dx \right)^{\frac{p}{p^*} \frac{\lambda}{p-\gamma}}, \quad (7)$$

$$(p-\gamma)/p = (1-\lambda)/\alpha + \lambda/p^*$$
 i.e., $\lambda = (1/\alpha - 1 + \gamma/p)/(1/\alpha - 1/p^*)$.

The assumption $\alpha = n(\gamma + 1 - p)/(p - \gamma)$ implies

$$\lambda = p - \gamma$$
 and $\frac{1 - \lambda}{\alpha} \frac{p}{p - \gamma} = p/n$.

Combining with (6), (7) and (4) yields

$$\left(\int_{A(k,r_{1})} (u-k)^{p^{*}} dx\right)^{p/p^{*}} \\
\leq C\{(r_{0}-r_{1})^{-p} \int_{A(k,r_{0})} (u-k)^{p} dx + \theta^{p/n} \left(\int_{A(k,r_{0})} (u-k)^{p^{*}} dx\right)^{p/p^{*}} \right\}. \tag{8}$$

If we take θ such that $C\theta^{p/n} \leq \frac{1}{2}$, then, in virure of the arbitrariness of r_0, r_1 we deduce from (8) (by the use of a lemma of Giaquinta-Giusti^[5]) that

$$\left(\int_{A(k,r_1)} (u-k)^{p^*} dx\right)^{p/p^*} \le C(r_0-r_1)^{-p} \int_{A(k,r_0)} (u-k)^p dx, \quad \forall 0 \le r_1 < r_0 \le r. \quad (9)$$

If $\alpha \geq p$, it follows from (9) that

$$\int_{A(k,r_1)} (u-k)^{\alpha} dx \leq |A(k,r_1)|^{1-\alpha/p^{*}} \left(\int_{A(k,r_1)} (u-k)^{p^{*}} dx \right)^{\alpha/p^{*}} \\
\leq C|A(k,r_0)|^{\alpha/n} (r_0-r_1)^{-\alpha} \int_{A(k,r_0)} (u-k)^{\alpha} dx. \tag{10}$$

If $0 < \alpha < p$, by the interpolation inequality we get from (9) that

$$\left(\int_{A(k,r_{1})} (u-k)^{p^{*}} dx\right)^{p/p^{*}} \\
\leq C(r_{0}-r_{1})^{-p} \left(\int_{A(k,r_{0})} (u-k)^{\alpha} dx\right)^{p(1-\lambda_{1})/\alpha} \left(\int_{A(k,r_{0})} (u-k)^{p^{*}} dx\right)^{\lambda_{1}p/p^{*}} \\
\leq \frac{1}{2} \left(\int_{A(k,r_{0})} (u-k)^{p^{*}} dx\right)^{p/p^{*}} + C(r_{0}-r_{1})^{-pn(\frac{1}{\alpha}-\frac{1}{p^{*}})} \left(\int_{A(k,r_{0})} (u-k)^{\alpha} dx\right)^{\frac{p}{\alpha}}, (11)$$

where $\lambda_1 = (1/\alpha - 1/p)/(1/\alpha - 1/p^*) \in (0,1)$.

For the same reason as above, the first term on the right hand side of (11) can be neglected, then, it follows

$$\int_{A(k,r_1)} (u-k)^{\alpha} dx \leq C[|A(k,r_0)|(r_0-r_1)^{-n}]^{(1-\alpha/p^*)} \int_{A(k,r_0)} (u-k)^{\alpha} dx.$$
 (10)

We now prove that (10) and (10)' imply

$$\operatorname{vrai}_{B_{4r}/B_{2r}} \max u \le 2k_0, \tag{12}$$

respectively. For this take for $m = 0, 1, 2, \cdots$

$$k_m = 2k_0 - k_0/2^m, r_m = r/2^m ext{ and } J_m = \int_{A(k_m, r_m)} (u - k_m)^{lpha} dx.$$

Replace k by k_{m+1} , and r_0, r_1 by r_m, r_{m^*+1} , respectively, we have

$$J_{m+1} \leq C \left(\int_{A(k_{m+1},r_m)} \left| \frac{u - k_m}{k_{m+1} - k_m} \right|^{\alpha} dx \right)^{\alpha/n} \left(\frac{2^{m+1}}{r} \right)^{\alpha} J_m$$

$$\leq C \left(\frac{2^{m+1}}{k_0} \right)^{\frac{\alpha^2}{n}} \left(\frac{2^{m+1}}{r} \right)^{\alpha} J_m^{1+\alpha/n}, \quad m = 0, 1, 2, \cdots.$$
(13)

(4) implies $J_0 \leq \theta$. Suppose we have proved

$$J_m \le \delta^m \theta. \tag{14}$$

Then, combining (13) with (14), we obtain

$$J_{m+1} \leq J_m C 2^{\alpha(1+\alpha/n)} (\theta k_0^{-\alpha})^{\alpha/n} R^{-\alpha} (\delta^{\alpha/n} 2^{\alpha(1+\alpha/n)})^m$$
.

Because of $R \geq 1$, if we take $\theta = \theta(k_0) > 0$ satisfying

$$C2^{\alpha(1+\alpha/n)}(\theta k_0^{-\alpha})^{\alpha/n} \leq \delta$$
 and $\delta^{\alpha/n}2^{\alpha(1+\alpha/n)} = 1$.

Then (14) holds also for m+1. By induction (14) holds for all positive integers. It follows that

$$0 = \lim_{m \to \infty} J_m = \int_{A(2k_0,0)} (u - 2k_0)^{\alpha} dx = \int_{B_{4r}/B_{2r}} |(u - 2k_0)^+|^{\alpha} dx,$$

and then (12) holds. By the weak maximum principle for generalized solutions of elliptic equations (see Yu-Liang^[6]) we have

$$\operatorname{vrai}_{B_{3r}} \max u^{+} \le \operatorname{vrai}_{\partial B_{3r}} \max u^{+} \le \operatorname{vrai}_{B_{4r}/B_{2r}} \max u^{+} \le 2k_{0}.$$
 (15)

From the proof above we see that the results hold as r increases. Therefore (15) implies $u^+ = 0$ on E^n owing to the arbitrariness of k_0 and r. Similarly, we can prove $(-u)^+ = 0$. Thus, the conclusion of the theorem is ture for the case of $p - 1 < \gamma < p - 1 + p/n$.

In the second case, $\gamma = p - 1 + p/n$, we have

$$p^* = p/(p-\gamma) = n(\gamma+1-p)/(p-\gamma) = \alpha.$$

It follows from (6) that

$$\left(\int_{A(k,r_{1})} (\nu-k)^{\alpha} dx\right)^{p/\alpha} \leq C\{(r_{0}-r_{1})^{-p}|A(k,r_{0})|^{1-p/\alpha}\left(\int_{A(k,r_{0})} (u-k)^{\alpha} dx\right)^{p/\alpha} + \int_{A(k,r_{0})} (u-k)^{\alpha} dx\}.$$
(16)

— 230 —

Now, replacing (13) we have

$$J_{m+1}^{p/\alpha} \leq C \left[\left(\frac{2^{m+1}}{r} \right)^p \left(\int_{A(k_{m+1}, r_m)} \left| \frac{u - k_m}{k_{m+1} - k_m} \right|^{\alpha} dx \right)^{1 - p/\alpha} J_m^{p/\alpha} + J_m \right]$$

$$\leq C \left[\left(\frac{2^{m+1}}{r} \right)^p \left(\frac{2^{m+1}}{k_0} \right)^{1 - p/\alpha} + 1 \right] J_m, \quad m = 0, 1, 2, \cdots.$$
(17)

On account of $r \ge R \ge 1$, from (17) we deduce again (12). The conclusion of the theorem is also ture for $\gamma = p - 1 + p/n$.

Finally we consider the case $\gamma = p - 1$. Let $\alpha \in (0, p)$. It follows from (6)

$$\left(\int_{A(k,r_{1})} (u-k)^{p^{*}} dx\right)^{p/p^{*}} \\
\leq C[(r_{0}-r_{1})^{-p}+1] \left(\int_{A(k,r_{0})} (u-k)^{\alpha} dx\right)^{(1-\lambda_{1})p/\alpha} \left(\int_{A(k,r_{0})} (u-k)^{p^{*}} dx\right)^{\lambda_{1}p/p^{*}} \\
\leq \frac{1}{2} \left(\int_{A(k,r_{0})} (u-k)^{p^{*}} dx\right)^{p/p^{*}} + C[(r_{0}-r_{1})^{-1} \\
+1]^{pn(1/\alpha-1/p^{*})} \left(\int_{A(k,r_{0})} (u-k)^{\alpha} dx\right)^{p/\alpha}, \quad 0 \leq r_{1} < r_{0} \leq r, \quad (19)$$

where λ_1 is the same as in (11). In virtue of the arbitrariness of r_0 and r_1 (18) implies

$$\begin{split} & (\int_{A(k,r_1)} (u-k)^{p^*} dx)^{p/p^*} \\ & \leq C[(r_0-r_1)^{-1}+1]^{pn(1/\alpha-1/p^*)} (\int_{A(k,r_0)} (u-k)^{\alpha} dx)^{p/\alpha}, \quad 0 \leq r_1 < r_0 \leq r. \end{split}$$

Repeating the argument above we obtain (12) again. The conclusion of the theorem is also ture for $\gamma = p - 1$. Q. E. D.

References

- [1] Liang Xiting, A Liouville theorem for generalized solutions of elliptic equations, J. Math. Research and Exposition, 10(2): 205-212, 1990. (in Chinese)
- [2] Yu Mingqi, Liang Xiting, On the Liouville theorem of generalized solutions of elliptic equations, J. Engineering Math., 8(4): 34-42, 1991. (in Chinese)
- [3] Yu Mingqi, Liang Xiting, On Liouville theorem for generalized solutions of elliptic equations, J. of Shanxi Univ. (Nat. Sci. Ed.), 14(2): 119-122, 1991. (in Chinese)
- [4] T.Kilpeläinen, Potential theory for supersolutions of degenerate elliptic equations, Indiana Univ. Math. J., 38: 253-275, 1989.
- [5] M.Giaquints, E.Giusti, On the regularity of the minima of variational integrals, Acta Math., 148: 31-42, 1982.
- [6] Yu Mingqi, Liang Xiting, The weak maximum principle for generalized solutions of quasilinear elliptic equations, J. of Shanxi Univ. (Nat. Sci. Ed.), 12(3): 241-248, 1989. (in Chinese)