- (8) $||x|| = r \Rightarrow ||Tx|| \le ||x||, ||x|| = R \Rightarrow ||Tx|| \ge ||x||;$
- (9) $||x|| = R \Rightarrow ||Tx|| \le ||x||, ||x|| = r \Rightarrow ||Tx|| \ge ||x||.$

Then T has a fixed point in $P_{r,R}$.

By the proof of the Theorem 7 in [4], we can obtain following result by Lemma 2.

Theorem 3 Let X be the same as in Lemma 2 and $T: P_R \to X$ be semiclosed 1-set-contraction mapping satisfying (1), suppose, for some $\delta > 0$, one of following conditions holds:

- (10) $||x|| = r \Rightarrow ||Tx|| \le ||x||, ||x|| = R \Rightarrow ||Tx|| \ge (1+\delta)||x||;$
- $(11) ||x|| = R \Rightarrow ||Tx|| \le ||x||, ||x|| = r \Rightarrow ||Tx|| \ge (1+\delta)||x||.$

Then T has a fixed point in $P_{r,R}$.

Remark Since a mapping which maps P_RI into the cone P must be weakly inward, we know that Theorem 3 improves Theorem 7 in [4].

Acknowledgment The author is greatly indebted to Professor Zhao Yichun for this assistance.

References

- [1] K.Deimling, Positive fixed points of weakly inward maps, Nonl. Anal., Vol.12, No.3(1988), 223-226.
- [2] K.Deimling and Hu Shouchuan, fixed points of weakly inward maps in conical shells, Nonl. Anal., Vol.12, No.3(1988), 227-230.
- [3] K.Deimling, Nonlinear functional analysis, Springer, Berlin, 1984.
- [4] Li Guozhen, The fixed point index and the fixed point theorems of 1-set-contraction maps, Proc. Amer. Math. Soc., Vol.104(1988), 1163-1170.
- [5] Li Guozhen, A new fixed point theroem on demi-compact 1- set-contraction mappings, Proc. Amer. Math. Soc., Vol.97, No.2(1986), 277-280.
- [6] Zhao Yichun, Nonlinear functional analysis and its application, High Eduction Press, China, 1990.

1- 集压缩映射的非零不动点

伊宏伟 (辽宁省铁岭师专数学系,112001)

摘要

本文给出了1- 集压缩映射的一些新的非零不动点定理,它们推广和改进了[1,2,4,5] 中的某些重要定理.

Positive Fixed Points of 1-set-contraction Mappings *

Yi Hongwei

(Dept. of Math., Tieling Normal College, Liaoning 112001)

Abstract In present paper, we establish some new positive fixed point Theorems for 1- set-contraction maps, which extend and improve the main results in [1,2,4,5].

Keywords Positive fixed point, 1-set-contraction Maps.

Classification AMS(1991) 47H10/CCL O177.91

1. Introduction and Preliminaries

Let X be a real Banach space, $P \subset X$ a cone, i.e., P is closed convex such that $tP \subset P$ for all $t \geq 0$ and $P \cap (-P) = \{0\}$. We denote the set $\{x \in P : ||x_{:t}^{|t|} \leq R\}$ by P_R and the set $\{x \in P : r \leq ||x|| \leq R\}$ by $P_{r,R}$, where 0 < r < R.

In [1,2,4,5], positive fixed point theorems were obtained for condesing mappings and 1-set-contraction mapings which map P_R into P. In this paper, we consider a more general mapping which is 1-set-contractive and maps P_R into the whole space X. The results in this paper extend and improve the main results in [1,2,4,5].

Let D be a closed subset of X, a mapping $T:D\to X$ is said to be weakly inward on D if $T_x\in I_D(x)$ for every $x\in D$, where $\overline{I}_D(x)=\overline{I}_D(x)$ and $\overline{I}_D(x)=\{x+t(y-x):t\geq 0 \text{ and } y\in D\}$. In case D is a cone P, This simply becomes

$$(*) x \in \partial P, x^* \in P^* \text{ and } x^*(x) = 0 \Rightarrow x^*(Tx) \ge 0,$$

where $P^* = \{x^* \in X : x^* > 0 \text{ on } P\}$ and P denotes the bonary of $P, T : D \to X$ is called a semi-closed 1-set-contraction mapping if, T is 1-set-contractive and I - T is closed. T is said to be a demi-compact 1- set-contraction mapping if T is 1-set-contractive and semi-compact. For the referred concepts of the condensing, k-set-contraction and semi-compact map etc., see [3,6].

2. Main Results

At the begining of this section, we recall that

Theorem [1] Let $T: P_R \to X$ be a condensing mapping, which satisfies (1) $x \in \partial P, ||x|| \leq R, x^* \in P$ and $x^*(x) = 0 \Rightarrow x^*(Tx) \geq 0$;

^{*}Received Nov. 14, 1992.

(2) $Tx \neq \lambda x$ for ||x|| = r for all $\lambda > 1$.

Then T has a fixed point in P_R .

Now we prove the following

Lemma 1 Let $T: P_R \to X$ be a 1-set-contraction mapping satisfing (1) and (2), and (c) If $\{x_n\}$ is any sequence in P_R such that $x_n - Tx_n \to 0$ as $n \to \infty$, then there exists a point $x' \in P_R$ with x' - TX' = 0. Then T has a fixed point in P_R

Proof Choose a sequence such that $0 < t_n < 1$ and $t_n \to 0$ as $n \to \infty$, and consider the mapping $T: P_R \to X$ defined by $T_n = t_n T$. Obviously, T_n is a t_n -set-contraction mapping and satisfieds (1) and (2). Hence from the above Theorem, there exists $x_n \in P_R$ such that $x_n = T_n x_n = t_n T x_n$ for each n. Since the sequence $\{x_n\}$ is bounded and $x_n - T x_n = (1 - 1/t_n)x_n \to 0$ as $n \to \infty$. Therefore T has a fixed point in P_R by the condition (c). \square

Theorem 1 Let $T: P_R \to X$ be a semi-compact 1-set-contraction mapping satisfying (1) and (2), and

(3) There exists $e \in P \setminus \{0\}$ such that $x - Tx \neq \lambda e$ for ||x|| = r and $\lambda > 0$. Then T has a fixed point in $P_{r,R}$.

Proof Let $\phi_n: [0, R] \to [0, \delta]$ be continuous such that $\phi_n(t) = 0$ for $t \geq r$ and $\phi_n(t) = \delta$ for $t \leq r - 1/n$ and large n with δ such that $\delta ||e|| > r + C$, where $C = \sup\{||T_x|| : x \in P_R\}$. Let $T_n x = Tx + \phi_n(||x||)e$ for $x \in P_R$. It is easy to check that T_n is 1-set-contractive and satisfies (1) and (2). From the semi-compactness of T, we can see that T_n satisfies (c). By Lemma 1, there exists $x_n \in P_R$ with $T_n x_n = x_n$. From the choice of ϕ_n , we cannot have that $||x_n|| \leq r - 1/n$. In fact, if $||x_n|| \leq r - 1/n$, then $x_n = Tx_n + \delta e$ and $r + C \geq \delta ||e||$, this contradicts the choice of δ . Assume that $r - 1/n < ||x_n|| < r$ for large n, since $\phi_n(||x_n||)$ is bounded and T is semi-compact, without loss of generality, we assume that $x_n - Tx_n = \phi_n(||x_n||)e \to \lambda e$, for some $\lambda \in [0, \delta]$ and $x_n \to x_0$ with $||x_n|| = r$. Hence $x_n = Tx_n + \lambda e$ and therefore $\lambda = 0$ by (3). This completes the proof. \square

Exchanging condion (2) and (3) in Theorem 1, we have

Theorem 2 Let $T: P_R \to X$ be demi-compact 1-set- contraction mapping satisfying (1) and

- (4) There exists $e \in P \setminus \{0\}$ such that $x Tx \neq \lambda e$ for ||x|| = R and $\lambda > 0$;
- (5) $Tx \neq \lambda x$ for ||x|| = r and $\lambda > 1$.

Then, T has a fixed point in $P_{r,R}$.

Proof Let $\phi(t) = \psi(t)r/t + (1 - \psi(t))R/t$ for $0 < t \le R$, where $\psi : [0, R]$ is a continuous function, $\psi(t) = 0$ for $t \le r$, $\psi(t) = 1$ for t = R and is linear in between. Then we consider

$$T_0x=rac{T(\phi(||x||)x)_k}{\phi(||x||)} \quad ext{for} \quad x\in P_R.$$

We claim that T_0 satisfies (1), (2), (3). Furthermore, T_0 is semi-compact and 1-set-contractive. Indeed, for any sequence $\{x_n\} \subset P_R$ such that $x_n - T_0x_n \to y$, we have

$$x_n - \frac{T(\phi(||x_n||)x_n)}{\phi(||x_n||)} \to y.$$

Since $\phi(||x_n||)$ is bounded and $r \leq \phi(||x||) \leq R$, without loss of generality, we assume that $\phi(||x_n||) \to \lambda$, $(r \leq \lambda \leq R)$. hence $\phi(||x_n||)x_n - T(\phi(||x_n||)x_n) \to \lambda y$. Since T is semi-compact, we have a sequence $\{x_m\}$ of $\{x_n\}$ and x_0 such that $((||x_m||)x_m) \to x_0$. Thus, we have $x_m \to x_0/\lambda$, hence T_0 is Semi-compact in P_R .

In addition, for any bounded subset $B \subset P_R$, let

$$A_{m,i} = \{x \in P_R : (i-1)R/m < ||x|| \le iR/m\},$$

the well-known properties of α imply that

$$\alpha(T_0B) \leq \lim_{m \to \infty} \max \frac{(T(\phi(||x||)x) : x \in B \cap A_{m,i})}{\min\{\phi(||x||) : x \in B \cap A_{m,i}\}}.$$

From the definition of ϕ , we have $\min\{\phi(||x||): x \in B \cap A_{m,i}\} = m$ for large m and $\alpha(T(\phi(||x||)x): x \in B \cap A_{m,i})$ is bounded, hence

$$\lim_{m\to\infty} \frac{\alpha(T(\phi(||x||)x): x\in B\cap A_{m,i})}{\min\{\phi(||x||)x): x\in B\cap A_{m,i}\}} = \lim_{m\to\infty} \alpha(T(\phi(||x||)x): x\in B\cap A_{m,i})/m$$
$$= 0 \le \alpha(B).$$

Since for $r_0 \in (0, R], \phi$ is uniform continuous in $[r_0, R]$, we have

$$\begin{array}{lcl} \alpha_{\boldsymbol{i}}(T_{0}B) & \leq & \max\{\overline{\lim_{m\to\infty}}\max_{2\leq i\leq m}\frac{\alpha(T(\phi(\|x\|)x):x\in B\cap A_{m,i})}{\min(\phi(\|x\|):x\in B\cap A_{m,i})}\alpha(B)\}\\ & \leq & \max\{\lim_{m\to\infty}\max_{2\leq i\leq m}\frac{\max(\phi(\|x\|):x\in B\cap A_{m,i})}{\min(\phi(\|x\|):x\in B\cap A_{m,i})}\alpha(B\cap A_{m,i}),\alpha(B)\}\\ & \leq & \max\{\alpha(B),\alpha(B)\}=\alpha(B). \end{array}$$

Hence T_0 is 1-set-contractive on P_R .

By Theorem 1, we have $x_0 \in P_{r,R}$ such that $x_0 = T_0x_0$. Hence $T(\phi(||x_0||)x_0) = \phi(||x_0||)x_0$. Let $y_0 = \phi(||x_0||)x_0$, then $y_0 \in P_{r,R}$ and $Ty_0 = y_0$, which completes the proof. \square .

From Theorem 1 and Theorem 2, we can prove the following result easily:

Corollary 1 Let $T: P_R \to X$ be a semi-compact 1-set-contraction mapping satisfying (1) and

(6)
$$||x|| = r \Rightarrow Tx \ngeq x; ||x|| = R \Rightarrow Tx \nleq x;$$

(7)
$$||x|| = R \Rightarrow Tx \not\geq x; ||x|| = r \Rightarrow Tx \not\leq x.$$

Then T has a fixed point in $P_{r,R}$.

Remark Since a condensing mapping must be semi-compact 1-set-contraction mapping, Theorem 1 and Theorem 2 extend Theorem 1 in [1] and Theorem 3 in [2] respectively. Utilizing Corollary 1 and applying the proof of the lemma in [4], we can easily prove that

Lemma 2 Let the norm $\|\cdot\|$ of X be increasing with respect to P and $T: P_R \to X$ be a k-set-contraction mapping (0 < k < 1) which satisfies (1) and one of following conditions:

or

- (8) $||x|| = r \Rightarrow ||Tx|| \le ||x||, ||x|| = R \Rightarrow ||Tx|| \ge ||x||;$
- (9) $||x|| = R \Rightarrow ||Tx|| \le ||x||, ||x|| = r \Rightarrow ||Tx|| \ge ||x||.$

Then T has a fixed point in $P_{r,R}$.

By the proof of the Theorem 7 in [4], we can obtain following result by Lemma 2.

Theorem 3 Let X be the same as in Lemma 2 and $T: P_R \to X$ be semiclosed 1-set-contraction mapping satisfying (1), suppose, for some $\delta > 0$, one of following conditions holds:

- (10) $||x|| = r \Rightarrow ||Tx|| \le ||x||, ||x|| = R \Rightarrow ||Tx|| \ge (1+\delta)||x||;$
- $(11) ||x|| = R \Rightarrow ||Tx|| \le ||x||, ||x|| = r \Rightarrow ||Tx|| \ge (1+\delta)||x||.$

Then T has a fixed point in $P_{r,R}$.

Remark Since a mapping which maps P_RI into the cone P must be weakly inward, we know that Theorem 3 improves Theorem 7 in [4].

Acknowledgment The author is greatly indebted to Professor Zhao Yichun for this assistance.

References

- [1] K.Deimling, Positive fixed points of weakly inward maps, Nonl. Anal., Vol.12, No.3(1988), 223-226.
- [2] K.Deimling and Hu Shouchuan, fixed points of weakly inward maps in conical shells, Nonl. Anal., Vol.12, No.3(1988), 227-230.
- [3] K.Deimling, Nonlinear functional analysis, Springer, Berlin, 1984.
- [4] Li Guozhen, The fixed point index and the fixed point theorems of 1-set-contraction maps, Proc. Amer. Math. Soc., Vol.104(1988), 1163-1170.
- [5] Li Guozhen, A new fixed point theroem on demi-compact 1- set-contraction mappings, Proc. Amer. Math. Soc., Vol.97, No.2(1986), 277-280.
- [6] Zhao Yichun, Nonlinear functional analysis and its application, High Eduction Press, China, 1990.

1- 集压缩映射的非零不动点

伊宏伟 (辽宁省铁岭师专数学系,112001)

摘要

本文给出了1- 集压缩映射的一些新的非零不动点定理,它们推广和改进了[1,2,4,5] 中的某些重要定理.