gq:ngg—)l(x) zg:‘ﬁﬂ@(oal,"'?m_&m) ﬁﬁ

- A v
(@B %2 B3+ 3 oL, 4L 50 100080)

w =

AAUTEF2LE, (2) 2B HE0(0,1,- -+, m—2, m) Wl E QY FEZSRAF, K
L{\(z) J9(n—1) KLaguerre XK. M1 BRI (FHEAEHIE) 099 REBRBAEL P4
. B LUENT, HFREHRELLEEZNH WEEH—BIERY fo(z) + Cfi(z),
XHC HEEBKI
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Abstract A necessary and sufficient condition for regularity of (0,1, -,m — 2, m) in-
terpolation on the zeros of :::Li:'_)l (z)(a« > —1) in a managealbe form is established, where

LS:’l_)l(z) is the (n — 1)- th Laguerre polynomial. Meanwhile, the explicit representation
of the fundamental polynomials, when they exist, is given. Moreover, we show that if the
problem of (0,1, -, m — 2, m) interpolation has an infinity of solutions then the general
form of the solutions is fy(z) + C fi(z) with an arbitrary constant C.

Keywords Birkhoff interpolation, Laguerre Polynomial, regularity.

Classification AMS(1991) 41A05/CCL 0174.41

1. Introduction

Let us consider a system A of nodes
0<y <z <<z, n>2. (L.1)

Let P, be the set of polynomials of degree at most n and m > 2 a fixed integer. The
problem of (0,1,---,m — 2, m) interpolation is, given a set of numbers

Ykj, k€N ={1,2,---,n}, je M :={0,1,--- ,m—2,m} (1.2)
to determine a polynomial Rpp—1 € Ppmp—1 (if any) such that

RY)_(zx) =y, Vke NVjeM. (1.3)
If for an arbitrary set of numbers yi; there exists a unique polynomial Rpn—1 € Ppn—1
satisfying (1.3) then we say that the problem of (0,1,---,m — 2, m) interpolation on A is
regular (otherwise, singular) and R,.n—1(z) can be uniquely written as

Rmn-1(z) = E YiiTki(Z), (1.4)
kEN
jEM
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where r¢; € Py satisfy
i (2,) = 8kbju, kv EN, jueM (15)
and are called the fundamental polynomials. In particular, for convenience of use we set

pe(z) = rem(z), k=1,2, ,n. (1.6)

In 1] and {2] the exact condition of regularity on the parameter o > —1 of the Laguerre
polynormials LS,Q)(:L') is found for (0,2) interpolation based on the zeros of these polyno-
mials, while the problemn of determining the fundamental polynomials is partially solved
for & = —1. For a > —1 the representation of fundamental polynomials is given only in
the case when « is an odd integer and only on (—oo0,0), while a representation on [0, )
would be inore important. Follwing the main idea of [1] and [2] we give here a necessary
and sufficient condition of regularity of (0,1,---,m — 2,m) interpolation on the zeros of
a:Lf,a_)l(z) (@ > —1). Meanwhile we develop a method of finding the explicit representation
of the fundamental polynomials when they exist without exception. TFinally, when the
problem of (0,1,---,m — 2,m) interpolation on A is not regular then for a given set of
numbers y; either there is no polynomial Ry,,—-1(z) satisfying (1.3) or there is an infinity
of polynomials with the property (1.3). Moreover, we show that in the case of infinity
many solutions the general form of the solutions is

Rpn-1(z) = fo(z) + Cf1(z),
where fo(z) and fi(z) arc fixed polynomials aud C is an arbitrary number.
2. An Auxiliary Lemma

We first state a lemma given by the author in [3]. To this end we introduce the
fundamental polynomials of (0,1,---,m — 1) interpolation. Let Ay;, By € Ppn-1 be
defined by

Ai‘;)(zu) = bkbju, k,v=1,2,---'n Fpu=01,---,m-1 (2.1)
and )
Bi(z) = Agm-1(z) = —(z - z)" UM z), k=1,2, n, (2.2)
where
wnl(z .
le(z) := _(Tgw)’(zﬁ’ wn(z) = c(z — :z:_l)(:c —xz3)- - (z — zp)(c #0). (2.3)

Then we have
Lemma If there is an index {,1 <. 1 < n, such that p; € P,,,,_y with the properties (1.5)
exists uniquely, then the problem of (0,1, --,m — 2, m) interpolation is regular and

n

rei(z) = Ag(z) = Y AT (@ )pu(z), k=1,2,--,n, j=0,1,--,m—2.  (24)

v=1
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Remark Since the expllc1t representation for A), ;8 is well known, by (2.4) it is sufficient
to find the one for pis.

3. Main Results

In what follows let n be fixed and

ﬁ

1.1) the zeros of szf_)l(:r.)(a > —1). Of course,
2

z3 =0 and z3,---,z, are the zeros of LS, 1(z). Write
1
T = E(m_l)(a—l)) 7= (m7—m+l)n_(nl+1)7) (3'1)
k| n-lt+a
(=1) ( n—1-k ) ‘
e = .  k=0,1,---,n— 1. (3.2)
It is well known that (2]
n—1
I) = Z ’1ka (33)
k=0
satisfies the differential equation
L") + (e +1 - )L (2) + (n - 1) LY (z) = 0. (3.4)
Theorem 1 The problem of (0,1,---,m — 2, m) interpolation on the zeros of wp(z) =

L( )l(x)(a > —1) is regular if and only if

mlnlk

Dp(a) = 27 (ﬂ—l)(—)" )

n—1l+a -2 Ya+1)(n—-1-k) o
n—l—k)(Z—l){r— (k—’—l)(k—t—l-&-a)}i (3.5)

If the problem is regular, then for each 1,1 < 1 < n, the fundamental polynomial
pi(z) == pi(z; @) is given by

pi(z) = wiHz)gi(z), (3.6)

in which ¢; € P,,_; is of the form

q.-(z)=z"e-‘“2”’{d,-+ [1a (c.+e.)L”()1t“wdt}, (3.7)
1

with certain constants d;, ¢; and e;, where

Qufe) = i

(3.8)
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Proof By the definition of p; we may set
pi(z) = w ™ (2)gi(2),
where ¢; € P,_; will be determined later. Then the requirement (1.5) yields
wr ()@ (2))m), = 6k, k=1,2,--,n.
It is easy to see that

W @I, = 5(m — miuf (2)™ 2t (2)

and

o (@22 = (m — Dl (2)™

Then (3.10) become

g(m~ Dwn(zk)gi(ze) + wp (k)i (i) = i ()T k=1,2,--,n
It follows from (3.2) and (3.4) that
! - 70, k=1
(/Jn(zk) — { sz',Sg)l(Ik), k>1
and
2')’1, k=1
M) = .
n(2k) { (::k-—a—{—l)L;(_)l(:ck), k> 1.
These, together with (3.11), give
. (a + 1)5,‘1
(e +1)gi(0) — (n = 1)(m — 1)g:(0) = Py
and ) 5
' m— _ _ Zkdik ..
qui(zk) + ( 2 L — ’7)‘1:(%) - m!wg(zk)m‘l’ k 2) 1
or

m-—1 ) ( ) I,‘&,‘k
ze — Vai(ze) = — 1,
g kT ATk mlw! (z;)m 1

Denote by D the differential operator

zeqi (k) + (

m-—1
2

Dy := zy' + ( T —)y.

Then (3.15) implies
Dg;(z) = Qi(z) - (& + eiz) L{Y, (2),

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3:14)

(3.15)

(3.16)

where ¢; and e; are constants to be determined and Q;(z) is given by (3.8). Solving this

differential equation we get (3.7) with a constant d; to be determined.
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Now let us determine ¢;,e; and d;. To this end put

n-—1
gi(z) = Z akz®. (3.17)

k=0

Meanwhile we write .
Qi(z) =2 Buz®. (3.18)

k=0

Comparing the coefficients  of z*¥ on both sides in (3.16) by means of (3.17),(3.18),
and (3.3) and adding (3.14), we obtain the system of equations with the unknowns
aO,"',an—l,Ci;ei

( (n—1)(m-1ag - (a+ 1oy = _(a+1)d;,

miqnt

m-—1
\ 7 ag-1+ (k —v)ar + yeci +yk-16i =Pk, k=0,1,---,n (3.19)
ka—lzan:7—l:7n:,ﬁn:0-

The coefficient determinant of this system is ‘

(n-1)(m-1) —(a+1) 0 0 0 0 0 0

- 0 0 0 0 Yo 0

m_z—l 1.—17 0 0 0 0 6! 70

0 n-2 2-4 0 0 0 72 M

Dp(a) = 2 -

n () 0 0 mol 3y 0 0 Y3 72
0 0 0 0 - 2l n-1-7 Y1 Yn-2

0 0 0 o - 0 mol 0 o1

Expanding this determinant by Lapace’s Theorem in terms of the elements of the first two
columns and the last two columns we get

(n-1)(m-1) —(a+1) 0 O

m-1_ - 0 J0 0
Dp(a) =(——)"? —

(o ( 2 ) mol -7 71 7

0 el mom
(n-1)(m-1) —(a+1) 0 0
= m-1 Y-2 - 0 Y 0

— ) (k- 1)
+,,Z::2( 7 ) )(k—l) mr l-v 7 7
0 0 Te+1 Yk
m-—1 “m-1 1—k N—2
=2’7c2)("—1)(*2—)"+’70 Z(T)"— (k- 1)! ( k-1 )’Yk
k=1

X{"[(a + 1)7k+l
Tk

e+ D2 = Zm =1+ 1) - (1= 7)(n = Dim - 1)}

Using the relations
n-—-1
k+1)(k+1+a)

7k+1:_( k> k:O,l,---,n—l
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the expression in the curved brackets is equal to

_FY((Ica++11))(§cn+—11+_aI;) taln=1) - %(m ~ Dl = (=)= 1m = 1)

e+ 1)(n-1-k)
(k+1)(k+1+a)’
We know that the system (3.19) has a unique solution if and only if (3.5) is true. By
Lemma this is equivalent to the regularity of (0,1,::-,m — 2, m) interpolation.
Solving (3.19) by Cramer’s rule we get ¢; and ¢;. As for d; we note that by (3.7) and
(3.17)

d; = emT—lq' = Z

To calculate a; we use (3.19) to get

2

Qg1 = — 1{,31; — 6 — Ye—16i + (v — k)ax}, k=n,n—-1,--- 1 (3.20)

This completes the proof.

Although Theorem 1 gives a necessary and suflicient condition of regularity in a man-
ageable form, it does not provide a practical information of regularity on n and a. The
next theorem provides a sufficient condition of this type in which [v] stands for the largest
integer not more than ~.

Theorem 2 The problem of (0,1, -+, m—2,m) interpolation on the zeros of.'z:L( ) e >
~1) is regular if one of the foIIowmg condmons is satisfied:

(a) v>2and
2= D{(m+1)7+2}, v =[]
n> 3 Bilm = 3] + 4+ m 1) | (321
, v# [
2(v- )
2(m - 1)
b) 2 _
(b) 2>~> T— and
_ _1)2
n22(2m 1)y +2(m 1); (3.22)
(2m—-1)y-2(m-1)
m-—1
<
(c) v<—
Proof For simplicity we introduce the following symbols
Y(a+1)(n—-1-k)
by =1 — k=1,--,n—1, 3.23
¢ k+)(k+1+a)’ " (3.23)
ao=2’7o("_1)( )",
Yo, m -1 4 n-1+a v I (3.24)
ap = k_2 ) (n—l—k)(k—l)ék’k—-l’ ,n—1.
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Then

2(n - k) (v - k)& 5
= -] = Tk Qf— k=2,---,n—-1. 3.25
(a) As preliminaries, first we show some claims.
: b{(m -3)rl+ 4y +m -1}
Claim 1. >5(r- D{(m + 1)y + 2}.
2(7- ) 31 Dm 41
In fact ,we have
[(Y{(m = 3)h] + 4y +m -1} — (v - 1I){(m + 1)y + 2}
= (] = H{m =3+ + 0} + (m-1)(7] +7) +2
> ={(m=3)((+7) +47} + (m - 1)([7] + 1) + 2
=2([v]+1-7) >0,
which proves our chain.
Claim 2. a; > ag.
In fact, under the assumptions and using (3.21) one has
a1 27 — % S 2r—y(n-2) {(2m - 1)y - 2(m — 1)}n — 2my
a  (m-1)?%a+1) " (m-1)2(a+1) 2(m-1)(v+m-1)
5 1@m-1)y-2(m- 1)}y - D{{m+ 1)y + 2} - 4my
4(m-1)(y+m-1)
m{(m + 1)y + 2} — 2my
> 1,
2(m-1)(y+m-1)
which proves our claim.
In this case we see that n > [v],
5k>5k—1>0; k=2,---,n—1 (3.26)
and a; > 0,0 < k < 4.
Then we note
Te < Ty, 3< k<. (3.27)

Meanwhile it is easy to check that (3.21) is equivalent to that 7,3 > 1 for v = [4] and

s} > 1 for v # [7]. Thus we have
ap>a;_1>0, 1<k<Hn.

For the proof proper of the theorem if 4 is an integer then

a)| E a,, |2 Ayl — Qy_2 > 0.

If 4 is not an integer then

sgnap = (-0 k=[4],[4]+1,---,n—1
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and hence

n—1 (7)1
|Dn(a)l = Z ak > Z lag| — Z ) ag| > ) = Afy]-1 > 0.
k=0 k=[] k=0

(b) In this case by a similar proof as before we see

a1 _ {(2m-1)y—2(m—-1)}n—2m~y
a > 1.
ag 2(m—-1)(y+m—1)
Hence (3.26) still holds and (—1)*a; < 0,k=1,2,---,n ~ 1. Thus D,(a) < 0.
(c) In this case we see that for k =1,2,--- ,n—1
(m-1)(mn-m
m

b < y=(mn-m-1)y-n(m-1)< _1)—n(m—1)

1-m?
= <0
m

and hence (—1)*a; > 0,k =0,1,--+,n — 1, which implies D,(a) > 0.
This completes the proof.

Theorem 3 If the problem of (0,1,---,m — 2, m) interpolation on the zeros of wy(z) :=
:z:L(a)l(z)(a > —1) is not regular, i.e., D,(c) = 0, then the general form of the solution of
(1.3) with yej =0 is

Rrn-1(2) = C* (2)q(2) (3.29)
in which C is an arbitrary number and ¢ € P, is of the form
¢(z) = 27 T {d+/ (e + 1)+ rt] I, (1)~ 1e ™5 dr) (3.30)

with a certain constant d.

Proof Obviously, Rpn-1 € Ppn-1 is a solution of (1.3) with yx; = 0 if and only if
Rmn-1(z) is of the form

Rmn-1(z) = wi "} (2)e(z), ¢E€Pny (3.31)
and satisfies
Wi (@a(@)m), =0, k=12, (3.32)
Comparing (3.32) with (3.10) and following the line of the proof of Theorem 1 we can
show that ¢ = Z;é agz® satisfies the differential equation with arbitrary numbers C and
E
Dg(z) = (C + Ex) LI (z) (3.33)

and the system of equations

(n-1)(m-1ay— (@+1)a; =0
2dak_1 + (k — v)ag = Cyk + Eqk-1, k=0,1,---,n (3.34)
Q-1 = 0p =9-1 =7, =0,
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which are analogues of (3.16) and (3.19), respectively. Moreover, if we can show that the
equation (3.33) with C = v(a + 1) has a unique solution (3.30) then the proof of the
theorem is complete. Solving (3.33) with C = y(a + 1) we get

(m—

1) {d+ /; [y(a+ 1)+ Et]LEua—)l(t)t_"_le(m;mdt}

g(z) = 2"e”

with constants d and F to be determined.
To determine d we note .
ne
d=e T Z Qg.
k=0

Obviously, D,(c) = 0 means that (3.34) has a nontrivial solution ag,-+,a,-1,C, E. In
this case we see that if ¥ = 0 then C' = 0 follows from the equation corresponding to k = 0
in (3.34) and if 4 # 0 then C # 0, for otherwise solving the first three equations in (3.34)
yields

_ Cv _ Cyn—-1)(m-1)
Q= ——, a1 = — )
2 e +1)
and ) ] c
m — T
E=— ag + (1 - -C = ——. 3.35
70{ 50+ (1= 7)a1 ~Cm} o (3.35)
Hence ag = -+ = ap~; = C = E = 0 would occur, which is impossible. This shows

that the system (3.34) with C = 4(a + 1) must have a solution. On the other hand,
C = vy(a+ 1) implies by (3.35) that E = r, and from (3.34) we can uniquely solve

ag-_1 = {vle+ D +ry-1+ (v - Kak}, k=n,n-1,---,1

m-—1
and hence uniquely determine d.
This complete the proof.
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