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Abstract Conditions are given on the functions f, g, h,p and ¢ which imply that all
continuable solutions of

Z+p(t)f(2) + q(t)g(z) = A(t, z, 2)
are abounded as well as oscillatory on the interval [tg, 00}, ty > 0.
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1. Introduction

In this paper we consider second order nonlinear ordinary differential equation with
functional coefficients

Z(t) + p(t) (2(t)) + q(t)g(=(t)) = h(t, z(2),2(¢)), (. = d/dt). (1)

This equation describes a peturbed physical system with nonlinear time dependent
restoring force, as well as nonlinear time dependent damping. Positive damping is com-
monly encountered in application, but negative damping or damping of variable sign is
also found: for example, the well known Van der Pol Oscillator

i+ A(z? - 1)z +wz =0,

and this equation with variable coefficients A and w (corresponding, e.g. to an inductively
tuned troide oscillator [9]. We consider the problem of giving conditions on the functions
f,9,h,p and ¢ for which all continuable solutions of (1) are bounded as well as oscillatory.
By continuable, we mean a solution which is defined on the interval [to,00). A solution is
said to be oscillatory if, given t; > 0, there is t > t; such that z(t) = 0; the equation itself
is said to be oscillatory if all its solutions are oscillatory.
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In the absence of the damping and the external force, there is a very large body of
literature devoted to the corresponding equation

Z + q(t)g(t)) = 0. (2)

we refer to [12] for an excellent and comprehensive bibiliography until 1968.

The use of averaging functions in the study of oscillations dates back to Wintner}1)
and Hartman!®. Colesl3l and Willett!9), and more recently, Kwong and Zettll?l developed
averaging techniques and respectively established more general theorems for equation (2)
and for the more general equation

(v(t)2(t)) + q(t)=(t) = 0. (3)

v(t) > 0, by considering weighted averages of the integral of ¢(t).

The problem of finding criteria for the oscillation of equation (3) has been studied
recently by various authors including Grace{"], Philos!® and Yan[!3). For equations in
which the perturbation term h(t, z,y) depends on z, such as equation (1), realatively few
oscillation criteria are known. The purpose of this paper is to develop some oscillation
criteria for the differential equation (1).

In the first section, we give conditions under which all solutions of equation (1) are
bounded for ¢t € [tg,00), and in the second section we give criterion in order that all
bounded solutions of (1) oscillate. That our results are fairly sharp will be illustrated by
some examples.

In the sequel we assume that

() f:R — Ris continuous and uf(u) > 0 for all u # 0.

(i) ¢ : R — R is differentiable such that zg(z) > 0 and ¢'(z) = Lg(z) > 0 for all
z # 0.

(i) h: [to,00) X R x R — R is continuous such that h(t,z,y) < ¢(t)e(z)p(y), where
g,p : R — R are bounded and continuous such that e(z) < g¢(z) for all z # 0, and
¢ : [to,00) — [0,00) is continuous.

(iv) p:[to,00) — R is continuous.

(v) q:[to,o0) — (0,00) is differentiable.

2. Boundedness of Solutions

Theorem 1 If in addition to conditions (i)-(v) above, we assume that
(vi) P(t) >0 for all t > tg > 0. There exists a positive function (t) such that

.. © (1)
(vii) . mdt < 0, and
q'(t)

(o]
(viii) / lc1p(t)¥(t) — —t]dt < o0, for some constant cj.
t q

Then all cor(l)tinuable solutions of (1) are bounded.

Proof Let z(t) be a regular solution of equation (1) for t > to > 0. Multiplying equation
(1) by (t)/q(2), yields

1d #%(1),  1¢'(1)#(1) , p(t)f(E(1)() |(1)]
szt g T2 + g TeEl) s ed®) T (4)




where c¢; is constant.
Ingegrating (4) from to to t we obtain

&*(t) I A (GO FRUS) £ ) a(s)ds
) G . / S~ [ TGN
té(s)
Ci to q(S) II Ids (5)
where G(z) = [ g(s)ds and ¢z = z%(t0)/(2¢ ( 0)) + G(z(to)).

By virtue of condition (i), (v) and (vi), the above inequatlity becomes

z%(t) 1 tq,(I)izzz e tﬂs—)is .
2q(t) 2 Joy 92(5) (z)ds + a1 . q(s)! (s)lds, (6)

The inequality 2ab < a?/0(t) + o(t)b?; where o is any positive function, implies that

+ G(z(t)) < ez -

Lo(s),. ¢ o(s) $)a2(s
) @|x(s)|d3 <, 2409) [1b(s)2*(s) +

1
m]ds.
Therefore (6) become
() tal(s), q'(s) a ft_¢ls) .
sa) OO et [T edlus) - Las+ 5 [ ST ()

By virtue of (v),(vi) and (vii) the above inequality (7) becomes

() £2(s) 7(s)
2 TEEW) < Mt / Za(s a5 %

)
M+A<;g+c@mﬂkmwwg_igws -

lerp(s)¥(s) —

IA

as G(z) > 0 by the condition (ii), where

a8l
M=t [ B0

By the Gronwall inequality, we have that
g'(s)

) o
o) O < Mexp [ jerg(@uls) - T ds < o0

Since g'(z) > 0 for z # 0, z(t) should be uniformly bounded. Moreover, if ¢ is bounded,
then £(t) is also bounded. This completes the proof. O

Romark 1 In the previous discussion it has been assumed that the function p was positive.
Indeed, our method can be applied to certain class of equations (1) with p(t) negative.
We rewrite equation (1) in the following form

Z +e(t)f(2) + q(t)g(z) = (e(t) — p(8) /(%) + A2, =, 2),
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where e(t) is a positive function.

Theorem 2 Assume, in addition to the conditions (i)—(v), that
(ix) p(t) <O for all t > tg, there exists a positive continuous function e(t) such that
(x) ® e(t) — p(t)
to q(t)
Y '(®)
() [ Herp@wle) - S8 + () - pe)}lae < oo
(xii) f*(u) < ou’+B;a>0and g > 0.
Then all continuable solutions of (1) are bounded.

dt < oo,

Proof Using reasoning analogous to that used in the proof of Theorem 1, we must

estimate the expression
[ AL ayisyas

q(s)
This integral satisfies

[:Mf(i(s)):i:(s)dssf e(‘°')—“’~[x2(s )+ 1*(#(s))]ds.

q(s) to 2q(

Now, since f?(u) < au’?+ f;a > 0 and A > 0, then we can improve ;: 4 +G(z(t)) in
(8). Then following the same procedure of Theorem 1 we have the same conclusion.

Remark 2 In fact, our method can be applied to a certain class of differential equations
(1) in which p(t) is allowed to change sign. This can be done by rewriting equation (1) as

2+ p+()/(2) +4(t)9(z) = —p-(8)/(2) + h(t, 2, 2) (1)’
where p, (t) = max{p(t),0}, p-(t) = min{p(t),0}. Then we have

Theorem 3 Assume, in addition to the condition (i)-(v), that
p-(t)
x1ii dt < oo,
i) J, =@
q'(t)

(xiv) [ Hes@yo(e) - Tl —p()ide < o,

aﬁfﬂ)gau+@a>0ﬁzo
Then all continuable solutions of (1) are bounded.

Proof The proof of Theorem 3 can be modelled on that of Theorem 2 and hence the
proof is omitted.

3. Oscillations of the Solutions

In this section we show that all bounded solutions studied in section 2 are oscillatory.
The following result is concerned with the oscillation of the bounded solutions of equa-
tion (1) when p(t) > 0.

Theorem 4 If in addition to the conditions (i)-(v}, we assume that
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(xvi) p(t) >0 and / p(t)dt < oo,
to
(o]
(evi) [ (ale) - $le))de = oo
(xviii) hmg_.oo/ / ~ ¢(u))duds =
Then all bounded squtzons of (1) are oscillatory.

Proof Assume the contrary that there exists a solution z(t) of (1) which satisfies —m <
z(t) < M, —a < z(t) < §, where m, M, a and f are positive constants that is not oscilla-
tory. Let z(t) > Ofor t > T} > to > 0. Without loss of generality we assume that z(t) > 0
for t > Ty (the case z(t) < O can be treated similarly). Then

(O H) #E0) i

9(z(2))’ ~ g(z(t) ¢ (=(t) ~ 9(=(2))
Substitute in equation, we have that
z(t) _onf @)
(2 < o0 - s 2D ), ()
For T3 > T an integration of (9) gives
i) _ iT) [ oSG,
o) < ) + I, P~ e [ o) s 1o
Now, if £(t) > 0 for all t > T3, then we have that
_i(Tz)
Jo ot etoas < 2 ty
Since ¢'(z) > 0 for all z # 0,9(z(t)) > g(z(T2)) for all t > T;. Hence, for all t > T,
la(s) - d(s)ds < )
[ late) - elenids < s

and integrating we obtain

L[ at) - ptullduds < [ a= [ (”) o

Taking the limit as t — oo we must have z(t) — co as t — oo, a contradiction to the
boundedness of z(t).
If 2(t) < O for all t > T3 > to, then we have from (10) that

/ (q(s) = $(s))ds < k + K Tt p(s)ds (12)

since z(t) and i(t) are bounded. Where k and K are constants. Taking the limit as

t — oo, we see that the integral on the right side of (12) does not exist. This obvious
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contradiction completes the proof.

Example Consider the differential equation
N U -
I+Z-2—(z+x3)+e 1tz =0, t>1. (13)

One can see that all conditions of Theorems 1 and 4 are satisfied. Therefore all
continuable solution of (13) are bounded oscillatory.

Note that none of the known criteria [1],[2] and [3] can apply to this equation.

The following result is concerned with the oscillation of the bounded solutions of (1)
when p(t) < 0.

Theorem 5 If in additions to the conditions (i)-(v), we assume that
(xix) h(t,z,y) =0 for all t,z and y =0,
(xx) p(t) <O for all t > to,

Goxi) [ (a(6) — #())ds = oo.
Then all continuable solutions of (1) such that —A < z(t) < B are oscillatory, where
A and B are positive constants.

Proof Suppose the theorem is false, then is there exists a solution of (1) satisfies —A4 <
z(t) < B and which is not oscillatory. Without loss of generality, we can assume that
z(t) > 0for t > T1 > to > 0. (A similar proof will apply if z(t) < 0 for t > T} > ty). We
proceed as in Theorem 4, and we have for t > T; the inequality (10). Now, let ¢, € [T1, 00)
be a cirtical point of z(t), then equation (1) implies that z(t,) < 0. Thercfore, t, is a
maximum of z(t). It follows that z(t) is eventually monotone on [T3,00) C [T}, 00).
Therefore, z(t) < 0 for all t € [T, ).
Hence, by virtue of the condition (i),(ii) and (xx) we have from (10) that

z(t) &(Tz) ¢
(=) = oz /T_(¢>(S) - q(s))ds. (14)

Since z(t) is bounded, we have that z(t) is negative increasing and lim;_ z(t) = O.

Hence, it follows from (14) that

[ (als) = ols))ds < #(Ta)fa(e(T2)

T2
This obvious contradiction completes the proof.

Example Consider the differential equation
. Zz 2
x-?+4tz:O, t> 1 (15)

This equation is a special case of the so-called Emden-Fowler equation.
One can sce easily that all conditions of Theorem 2 are satisfied, where ¢(t) can be taken
1

as e(t) = ¢. Also, all conditions of Theorem 5 are satisifed. Therefore, all continuable
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solutions of (15) are bounded as well as oscillatory. One such solution is z(t) = sin(t?),t >
1. This result can not be obtained from [2].
We conclude this paper by the following result, which is concerned with the oscillation
of the bounded solutions of (1) when p(¢) may chang sign.
Consider equation (1) in its equivalent form (1)'. Let H(t,z,y) = h(t,z,y)—p-(t) f(2).
Then we have
Theorem 6 Assume, in addition to the condition (i)-(v), that
(xxii) / ps (£)dt < oo,
t
(xxiii) ;I(t,a:,y)/g(:c) < aF(t) for t € [tg,00), and |z] < A,|y| < B. Where a is
constant and F : [tg,00) — (0, 00) is continuous,
o
(xxiv) / (¢(s) — aF(s))ds = oo,
% o
(xxv) / / (¢(u) — aF(u))duds = oo.
to Jt
Then all continuable solutions of (1) such that |z(t)| < A,|z(t)| < B are oscillatory.

Proof The proof of Theorem 6 can be modelled on that of Theorem 4 and hence is
omitted.

Example Consider the differential equation

.  cost .
z+ 72 r+zxz=0, t>1.
Rewriting this equation as
..  cost. cost ,
T+ 72 T+zxr—= —t—zz,
where (cost) = max{cost,0}, (cost)_ = min{cost,0}. One can verify that all conditions

of theorem 6 are satisfied. Therefore, all bounded solutions of (1) are oscillatory.
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