then $Q \subset M$ and $P \cap Q = (0)$ (since if $P \cap Q \neq (0)$, then $P \cap Q$ is a power of some primary ideal and hence $P \cap Q = \sqrt{P \cap Q} \in \operatorname{Spec} R$, which implies P = Q). It is easily proved that R has only three prime ideals P, Q and M, where $P \cap Q = (0)$. By the same argument as above we can prove that each non-zero primary ideal belonging to P or Q is a power of Por Q. Therefore each non-zero ideal of R is a power of some minimal prime ideal or is a power of some primary ideal belonging to the maximal ideal.

The converse is obvious. This completes the proof.

The following Corollary gives a new characterization of generalized primary rings and its proof is analogous to that of Corollary in [1].

Corollary A ring R is a generalized primary ring if and only if R is a pseudo primary ring and (0) is a primary ideal of R.

References

- [1] Dong Xuedong, Pseudo primary rings, Northeastern Math. J., 7(4)(1991), 448-452.
- [2] Dong Xuedong, On weakly primary rings(in Chinese), Northeastern Math. J., 4(3)(1988), 316-322.
- [3] J.A.Johnson, A note on Noether lattices in which each element is primary, Acta Math. Acad. Sci. Hungar., 27(1-2)(1976), 29-31.
- [4] R.Chaudhuri, A note on generalized primary rings, Mat. Vesnik, 13(28)(1976), 375-377.
- [5] M.F.Atiyah and I.G.MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass., 1969.

关于伪准素环的注记

董学东 (辽宁师范大学数学系,大连116022)

摘 要

一个有单位元的交换环R 称为伪准索环,如果R 的每个非零理想都是某个准索理想之 幂. 本文证明了环R 是伪准紊环当且仅当R 是准索环或R 是两个域的直和或R 是至多具 有三个家理想的一维局部环,并且每个非零理想或是某个极小素理想之幂或是某个属于 极大理想的准素理想之幂.

A Note on Pseudo Primary Rings *

Dong Xuedong
(Dept. of Math., Liaoning Normal Univ., Dalian 116022)

Abstract A commutative ring with identity R is called a pseudo primary ring if each non-zero ideal of R is a power of a primary ideal. In this note we prove that a ring R is a pseudo primary ring if and only if R is a primary ring or R is a direct sum of two fields or R is a one-dimensional local ring with at most three prime ideals in which each non-zero ideal is a power of a minimal prime ideal or is a power of some primary ideal belonging to the maximal ideal.

Keywords primary ideal, commutative ring.

Classification AMS(1991) 13A17/CCL O153.3

A commutative ring with identity R is called a pseudo primary ring if each non-zero ideal of R is a power of a primary ideal^[1]. In this note we give a complete classification of all pseudo primary rings in terms of other well-known types of rings and a new characterization of generalized primary rings. Therefore we generalize the main results of [1]-[4].

The notations and terminology used here are the same as that of Atiyah and MacDonald^[5]. A commutative ring with identity R is called a primary ring if $|\operatorname{Spec} R| = 1$. A commutative ring with identity R is called a generalized primary ring if each ideal of R is primary^[3].

Our result is

Theorem A ring R is a pseudo primary ring if and only if R is a primary ring or R is a direct sum of two fields or R is a one-dimensional local ring with at most three prime ideals in which each non-zero ideal is a power of a minimal prime ideal or is a power of some primary ideal belonging to the maximal ideal.

Proof Let R be a pseudo primary ring. If R is not a local ring, then there are at least two maximal ideals M_1 and M_2 . If $M_1 \cap M_2 \neq (0)$, then $M_1 \cap M_2$ is a power of some primary ideal. So we have

$$M_1 \cap M_2 = \sqrt{M_1} \cap \sqrt{M_2} = \sqrt{M_1 \cap M_2} \in \operatorname{Spec} R$$

which implies $M_1 = M_2$, a contradiction. Thus $M_1 \cap M_2 = (0)$. Obviously, $R = M_1 + M_2$. By Chinese Remainder Theorem $R \cong R/M_1 \oplus R/M_2$, that is, R is a direct sum of two

^{*}Received June 28, 1993. Project Supported by the Natural Science Foundation of Liaoning Province.

fields. In the following we suppose that R is a local ring. We shall first prove that each non-maximal prime ideal of R is principal. Let $P \neq (0) \in \operatorname{Spec} R$, $M \in \operatorname{Max} R$ and $P \subset M$. If PM = P, then for any $x \in M - P$ we have

$$\overline{P}\overline{M} = \overline{P}$$
.

where $\overline{P} = P/(x)P$, $\overline{M} = M/(x)P$. For any $p \neq 0 \in P$, we have

$$(0) \neq (p) \subseteq (p) + (x)P.$$

So there are a primary ideal Q and a positive integer n such that

$$(p) + (x)P = Q^n.$$

It is obvious that $\sqrt{Q} \subseteq P$. From $(x)P \subseteq Q$ and $x \notin P \supseteq \sqrt{Q}$ it follows that $P \subseteq Q$. Thus P = Q and

$$[(p)+(x)P]/(x)P=P^{n}/(x)P=(\overline{P})^{n}=\overline{PM}(\overline{P})^{n-1}=[(p+(x)P]/(x)P\cdot\overline{M}.$$

By Nakayama's lemma we get

$$(p) + (x)P = (x)P$$

which implies $P \subseteq (x)P$ and P = (x)P. Now for $p \neq 0 \in P$, there are primary ideal N and a positive integer m such that $(p) = N^m$. It is easily seen that

$$N \subseteq P = (x)P \subseteq (x)$$
.

Thus there is ideal

$$A = \{a \in R | y = xa \text{ for some } y \in N\}$$

such that N=(x)A. Since $x\notin P\supseteq \sqrt{N}$ we have $A\subseteq N$ and hence N=(x)N. So

$$(p) = N^m = (x)NN^{m-1} = (x)(p) = (xp)$$

and therefore there is an $r \in R$ such that

$$p = xpr.$$

Since $x \in M, 1 - xr$ is unit of R. Thus we have p = 0, a contradiction. This shows $PM \subset P$. Take $p \in P - MP$ and $x \in M - P$. Then

$$(p) + (x)P = Q^n$$

for some primary iseal Q and some positive integer n. Obviously $\sqrt{Q} \subseteq P$. If n > 1, then

$$p \in Q^n \subseteq MP$$
,

a contradiction. So we have (p) + (x)P = Q. From $(x)P \subseteq Q$ and $x \notin P \supseteq \sqrt{Q}$ it follows that

$$P \subseteq Q = (p) + (x)P \subseteq (p) + MP \subseteq P$$

-- 342 ---

and therefore P = (p) + MP. Thus in the ring $\overline{R} = R/(p)$ we have

$$P/(p) = M/(p) \cdot P/(p)$$
.

Since R/(p) is still a local pseudo primary ring, we conclude P/(p)=(0) by the foregoing proof. This shows P=(p), that is, each non-maximal prime ideal of R is principal. Next we shall prove dim $R \leq 1$. If dim R > 1, then in R there is a strict ascending chain $P \subset N \subset M$ of proper prime ideals, where $M \in \text{Max} R$. Let P=(x) and N=(y). Then $x=yz \in P$ for some $z \in R$. From $y \notin P$ it follows that

$$z \in P = (x).$$

So there is a $r \in R$ such that z = xr. Then

$$x(1-yr)=0.$$

Since $y \in M, 1 - yr$ is a unit of R. Thus x = 0, that is, P = (0). Now it is easily proved that R has only three prime ideals (0), N = (y) and M. Let A be a primary ideal belonging to N. Then there is a positive integer n such that $y^n \in A$. So

$$N^n \subseteq A \subseteq N$$
.

If $A \neq N^n$, then there is a positive integer k such that $A \subseteq N^k$ but $A \not\subseteq N^{k+1}$. Take $d \in A - N^{k+1}$. Then there is a $e \in R$ such that $d = y^k e \in A$. Obviously,

$$e \not\in (y) = N = \sqrt{A}$$
.

So we have

$$y^k \in A$$
 and $A = N^k$.

Thus any non-zero ideal contained in N is a power of N. In particular, take $q \in M - N$, then there is a positive integer m such that

$$(yq) = N^m = (y^m).$$

If m > 1, then there is an $f \in R$ such that $yq = y^m f$ and hence

$$q=q^{m-1}f\in N$$
,

a contradiction if m=1, then there is a $g\in R$ such that y=yqg. Since $q\in M, 1-qg$ is a unit of R. So

$$N = (y) = (0),$$

again a contradiction. This shows dim $R \leq 1$. Finally, if dim R = 0, then R is a primary ring. If dim R = 1, then there is a strict ascending chain $P \subset M$ of proper prime ideals of R. Obviously, $M \in \text{Max}R$. If R has only prime ideals P and M, let A be a non-zero primary ideal belonging to P, then by the same argument as above we can prove that A is a power of P. If R has another prime ideal Q such that

$$Q \neq P$$
 and $Q \neq M$,

then $Q \subset M$ and $P \cap Q = (0)$ (since if $P \cap Q \neq (0)$, then $P \cap Q$ is a power of some primary ideal and hence $P \cap Q = \sqrt{P \cap Q} \in \operatorname{Spec} R$, which implies P = Q). It is easily proved that R has only three prime ideals P, Q and M, where $P \cap Q = (0)$. By the same argument as above we can prove that each non-zero primary ideal belonging to P or Q is a power of Por Q. Therefore each non-zero ideal of R is a power of some minimal prime ideal or is a power of some primary ideal belonging to the maximal ideal.

The converse is obvious. This completes the proof.

The following Corollary gives a new characterization of generalized primary rings and its proof is analogous to that of Corollary in [1].

Corollary A ring R is a generalized primary ring if and only if R is a pseudo primary ring and (0) is a primary ideal of R.

References

- [1] Dong Xuedong, Pseudo primary rings, Northeastern Math. J., 7(4)(1991), 448-452.
- [2] Dong Xuedong, On weakly primary rings(in Chinese), Northeastern Math. J., 4(3)(1988), 316-322.
- [3] J.A.Johnson, A note on Noether lattices in which each element is primary, Acta Math. Acad. Sci. Hungar., 27(1-2)(1976), 29-31.
- [4] R.Chaudhuri, A note on generalized primary rings, Mat. Vesnik, 13(28)(1976), 375-377.
- [5] M.F.Atiyah and I.G.MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass., 1969.

关于伪准素环的注记

董学东 (辽宁师范大学数学系,大连116022)

摘 要

一个有单位元的交换环R 称为伪准索环,如果R 的每个非零理想都是某个准索理想之 幂. 本文证明了环R 是伪准紊环当且仅当R 是准索环或R 是两个域的直和或R 是至多具 有三个家理想的一维局部环,并且每个非零理想或是某个极小素理想之幂或是某个属于 极大理想的准素理想之幂.