On the Construction of Approximate Inertial Manifolds *

Wang Bixiang

(Dept. of Math., Lanzhou University, Lanzhou 730000)

Keywords contraction principle, approximate inertial manifold, reaction diffusion equation.

Classification AMS(1991) 35B40, 35K57/CCL O175.26

An approximate inertial manifold is a smooth finite manifold such that every orbit enters its a small neighborhood after a finite time. In this paper, we construct an approximate inertial manifold for the following reaction diffusion equations:

$$\frac{\partial u}{\partial t} - d\Delta u + g(u) = 0 \text{ in } R^+ \times \Omega,$$
 (1)

with

$$u(x,0) = u_0(x) \text{ and } u|_{\partial\Omega} = 0, \tag{2}$$

where d > 0 and Ω is a bounded regular subset of $R^n (n \leq 4)$. g is C^2 function from R to R which satisfies

$$g'(s) \ge -c_1 \text{ and } c_2|s|^k - c_4 \le g(s)s \le c_3|s|^k + c_4$$
 (3)

for $s \in R$ with $k > 2, c_i > 0$.

Let $Au=-d\Delta u+u$, then A is an unbounded positive self-adjoint operator on $H=L^2(\Omega)$ with domain $D(A)=\{u\in H^2(\Omega): u|_{\partial\Omega}=0\}$. Since A^{-1} is compact, there exists an orthonormal basis of H consisting of eigenvectors w_j of A, i.e., $Aw_j=\lambda_jw_j(j=1,\cdots)$. Under assumptions (3), it follows from [1] that for $u_0\in H$, the problem (1) and (2) have a unique solution u(t) defined on R^+ such that $||u(t)||\leq M_0, |u(t)|_{\infty}\leq M_0$ for $t\geq t_0$, where t_0 depends on u_0 and M_0 is a constant. Here and after, we denote by $||\cdot||$ the norm of $D(A^{\frac{1}{2}})$. Let $\phi:R^+\to R$ be a smooth truncation function such that $\phi(s)=1$, if $0\leq s\leq 1$; $\phi(s)=0$ if $s\geq 2$. Set $f(s)=\phi(\frac{s^2}{M_0^2})(g(s)-s)$ for $s\in R$, then when $t\geq t_0, u(t)$ satisfies

$$\frac{du}{dt} + Au + f(u) = 0, (4)$$

^{*}Received Apr.8, 1993.

for m given, denote by $P_m: H \to \operatorname{span}(w_1, \dots, w_m)$ the projector and $Q_m = I - P_m$. We introduce

$$B_m = \{ y \in P_m H : ||y|| \le 2M_0 \}, \quad B_m^* = \{ z \in Q_m H : ||z|| \le 2M_0 \}.$$

For $y \in B_m$, consider the following implicit system

$$y_1 + Ay + P_m f(y + z) = 0,$$
 (5)

$$Az_1 + Q_m f'(y+z)(y_1+z_1) = 0, (6)$$

$$z_1 + Az + Q_m f(y + z) = 0. (7)$$

By a fixed point argument, we may show

Theorem 1 There exists an integer m_0 such that when $m \ge m_0$, for all $y \in B_m$ the system (5)-(6) has a unique solution $y_1(y) \in P_mH$, $z_1(y) \in Q_mH$, and $z(y) \in B_m^*$.

By Theorem 1, we can define a mapping $\xi: B_m \to B_m^*$ such that for $y \in B_m$, $\xi(y) = z(y)$. Let $\Sigma = \text{graph } (\xi)$, then our main results are obtained:

Theorem 2 Assume that (3) holds. Then there exists m_1 such that when $m \ge m_1, \Sigma$ is an approximate inertial manifold of (1)-(2), and any solution u(t) of (1)-(2) remains at a distance of Σ in H bounded by $M_1(\frac{\lambda_1}{\lambda_{m+1}})^3$ for all $t \ge t_1$, where t_1 depending on u_0 and M_1 is a constant.

We remark that because of $\lambda_m \to \infty$ as $m \to \infty$, Theorem 2 implies that the distance of u(t) from Σ can be made arbitrarily small by choosing m large enough.

References

[1] M.Marion, Approximate inertial manifolds for reaction diffusion equations in high space dimension, J. Dynamics Differential Equations, Vol.1, No.3(1989), 245-267.