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A Few Constructions of Generalized Rational Splines

Tan Jieqing Zhu Gonggin
(Dept. of Applicd Math. Mcch., Hefei University of Technology, 230009 )

Abstract The aim of this paper is to construct a few kinds of generalized interpolating
rational splines by various method, including Thiele’s reciprocal difference method, Padé
approximant method, generalized Q.D.algorithm and generalized e-algorithm. Among
others we also establish in direct way the determinant representations and remainder
representations of the generalized rational splines of type (k — 1, &) and prove somne prop-
crtics of them, such as existence, uniqueness, homogeneity and continuity of generalized
rational spline operators.

Keywords interpolation, rational spline, Padé approximant, divided difference.

Classification AMS(1991) 41A/CCL 0174.41

1. Introduction

Suppose [a, b] is an interval which is divided into subintervals by the following partition

Tia=ty<t; < - <tjo1<t;<---<t,=b

Let Tj = [tj,t;41], then [a,b] = U;-";(}Tj. Suppose § > 0 is so small that §(¢;) = [¢t; — 6,t; +

8 CTjo1UTy,5 =1,2,---,n = 1,8(ty) = [to,to + 8] C To,8(tn) = [t — 6,t,] C Thmy and
8(t;) N o(te) = 0,7 # k, and the set X; = {zgl),zf_f),---} C 6(t;) for i = 0,1,2,---,n is
chosen so that :cgz) = t; and the elements in X; do not have to be distinct from each other.

Let . . . . .
w = wf(2) = (2 - 2Nz - 2P) - (2 - =), (1.1)

and the following interpolation conditions by given by means of divided difference of
smooth function f(z)

® = f[zgi)axgi)a"'azr(ril)-{-l]’ m = Ovla""k - 1)1 = Oa]"" L (12)

m

Definition 1 Real function R(z) in [a,b] is called generalized rational spline (GRS) of
type (r,1) with respect to f(z) if it satisfies the following conditions

*Received Sep.29, 1993. supported by the National Natural Science Foundation of China.
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(a) For each subinterval T;, R(z) = Py(z)/Qi(z),i = 0,1,---,n — 1 with Py(z) €
H,,Qi(z) E H;, here H;, denotes the collection of all polynomials of degree k.

(b) Ty il (z) = Pi2)/Qu(x) = 0wy (2).

(c) Tiowm Wl (2) - Pi(2)/Qi(=) = 0(w™(2))

(d) r+1=2k-1.
It follows from the above definition

Pi1(2)/Qina(2) — Pi(2)/Qi(z) = O(wi ) (2)), (1.3)

where by O(w,(j)(:z:)) we mean dkw(i)( )+ dk+1w£21(2:) +---. fin X;4, appear M;;1(< k)

coincident elements, say, t;;1 = .'c§’+1) gﬂ'l) = ... = zg\;l) then we know from (1.3)

that R(z) is a rational spline function with smoothness orders M;z1 — 1 over T; U Ti4q.
Let § tend to zero, then the GRS R(z) turns out to be the Padé spline the authors first
introduced and studied (see [9,10]).

Very few results have been achieved in interpolating rational splines since R.Schaback
([5]) pioneered the study of this subject in early seventies, though constant efforts have
been made to develop numerical methods leading to the constructions of rational splines
for many years. There is no doubt that the biggest obstacle against the advance of rational
splines results from their nonlinearity. In Schaback’s case, the determination of rational
splines are subject to a system of nonlinear equations which are difficult to carry out.
To make up for this, R.H.Wang et al. ([6,7]) concretely studied a few special types of
interpolating rational splines consisting of both polynomial parts and rational parts which
are convenient for computation due to their linear determinability. However we observe
that there is a shortage in [6] for lack of numerical recursive algorithms.

The object of this paper is to present a few effective approaches to the construction of
generalized rational splines in terms of Newton’s interpolation. An outline of the contents
is roughly arranged as follows. In Section 2 we construct a few kinds of GRSs by vari-
ous ethods, including Thiele’s reciprocal difference method, Padé approximant method,
generalized Q.D.algorithm and generalized ¢-algorithim. In Section 3 we establish in di-
rect way the determinant representations and remainder expressions of GRSs with type
(k —1,k), and in Section 4 we give some properties of them.

2. Costructions of GRSs
Before stating our results, we need the following propositions.

Proposition 2.1 The conditions (b) and (c) in Definition 1 are equivalent to the require-
ments

1 i z+1 i+1) i+1 .
P(E/Qi(S) = £, P )il = 1), i =12,k
For the sake of convenience, we introduce the following notations
z, ::c.(,"), s=1,2,---,k, (2.1)

zo=2 ) s k4 1,k+2,-,2k, (2.2)
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Ym(z) = (z —z1)(z —22) - (2 — zn), m < 2k. (2.3)

Construction 1 of GRSs

Initialisation. Define

b1 = f(:l!l), (24)
and, for j = 2,3,---, 2k,
RO (g.y= _Ti— %1 25
( J) f(z_]) _ bl ( )
Iteration. For s = 2,3,---,2k — 1, define
b, = R©)(z,), (2.6)
and for j =s+1,s8+2,---,2k,
RO (z)= 9 =% (2.7)

Termination. Define

b = RC¥) (z4,). (2.8)
The resulting construct is

T—2z1 T— Ty T — Top_1

by + by +  + by

R(z) = b+ (2.9)
We point out that the above continued fraction R(z) can serve as the P;(z)/Q;(z) in
Definition 1 with P;j(z) and Q:(z) belonging to H; and Hj_, respectively. In fact the

iterative steps (2.4)-(2.8) is based on Proposition 2.1 and the following considerations.
Let

R¥)(z) = b3+zb—:s NS “’_—3%1 s=1,2,---,2k, (2.10)
then -
(9) — - "
RO)(z) = b, + g (2.11)

and from (2.11) follow (2.6)-(2.8). It is easy to see that R(z) = R()(z) is a rational
function of type (k,k — 1). In order to make R(z) serve as P;(z)/Qi(z), we are obliged to
set stages (2.4) and (2.5) by menas of (2.11).

If g(z) = 1/ f(z) is defined on the union §(ty) U §(¢1) U --- U §(t,,), then we can obtain
a GRS of type (k — 1,k) through the construction below

Construction 2

Define )
T—2 T — 221
R(z) = —+ NPt otk 2.12
(=) b1 by + + b ( )
where b,,s = 1,2,---,2k can be computed by the same iterative procedure as in Construc-

tion 1 except for that f(z) is replaced, with its inverse function g(z).
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Construction 3

Define
Z gDwd(z) + wl (2)R*(2), (2.13)
m=0
where
* = T4l T —ZTok-1
R(z)=bj 41+ —mM@m=— -« — — 2.14
(2) = b by +  + 0 by (2.14)
or define
R(z Z y(1+1 t+1) ) w£i+1)(m)R(:), (2'15)
m=0
where
R(z)=b + 222 L7 % (2.16)

b, + + b

By Newton’s interpolation formula, we can write

2:%,m )+ @l (@)f (=), (2.17)

m=0

or

= T ) + o) o) (218)
m=0
We compute R*(z) and R(z) in a similar manner to (2.4)—(2.9) so that f*(z,) = R*(z,)
fors =k+1,---,2k and f(z,) = R(z,) for s = 1,2,---, k. At this time, there always hold
R(z,) = f(z,) for s = 1,2,---,2k. Therefore by Proposition 2.1, R(z) defined in (2.13)
and (2.15) plays the part P;(z)/Q:(z) of the GRS of type (k + [k/2],[k — 1/2]), where [z]

stands for the largest integer not exceeding z.

Remark 1 Changing the continued fraction R*(z) in (2.13) or R(z) in (2.15) into the
form analogous to (2.12) and using the algorithm therein, one can obtain a GRS of type

(k+ [k —1/2],[k/2]).

Construction 4

Define
by = f(zs), s=1,2,---,2k, (2.19)
Ty — Tt
by = ; 2.20
at b — b, ( )
and in general for j > 2,
big,..j = % (2.21)

bly...yj_g’j — bly...,_.,'_1
Then a GRS of type (k, k — 1) is given by

-2 T — Tok-1

b12 ++ b12,....2k

R(z) =b +
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It suffices to show R(z,) = f(z,) for s = 1,2,---,2k. From (2.22) and (2.19)-(2.21)
we have

T, — I LTy — Ts—1
R(z,) = b UL Rt |
(=) o bio + 4+ bigz..s

T, - T1 Ly — T2
= b s - ..., 22 =l
Lt bi, + + b12,5-2,s
T,— T
= b+ = = b, = f(z,).
1,8

Remark 2 Construction 4 is practically based on Thiele’s reciprocal difference method.
If f(z,) # 0 for s = 1,2,---,2k, then by letting b, = 1/f(z,) and keeping (2.20) and
(2.21) unchanged one gets a GRS 1/R(z) of type (k—1,k), where R(z) is given by (2.22).
One can also apply Construction 4 to Construction 3 to yield other types of GRSs.

Construction 5

Set
for = flza,zoq1, - 2, (2.23)
r+1
fiiesz o frersr D frngioa(2)
J=l+1
r+1
flovz o fia fiibioi(z
P,-(.’c): + Lr+l+1 ; ¥y 1( ) ’ (2.24)
r+1
firvz 0 fienn Y frivi-i()
j=1
fl+1.1'+?. fl+1,r+l+1 1,[11(73)
42 - - — r
0i(a) = fz,:+ ) fi, T1+1 ¥ :1( ) , (2.95)

frt2 0 fiedin 1

where f,; = 0if s > t. It is not difficult to verify that P;(z)/Q;(z) will be in conformity
with the requirements in Definition 1 and act as a GRS of type (r,[) provided Qi(z,) # 0
fors=1,2,---,2kand r +1 =2k - 1.

Keeping the notations introduced in Construction 3, we have the following

Construction 6
Let

k-1 )
Pi(2)/Qi(z) = Y 3wl (2) + 0l (2) Pr(2)/Q5 (=), (226)

where P;(z) and Q}(z) are obtained through substituting-f;, = f*[2s4k, Zegrt1, > Te4i]
and wJ(IH)(:z:) into (2.24),(2.25) for f,; and ¥;(z) respectively. By Construction 3 and
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Construction 5, P;(z)/Q:(z) in (2.26) provides us with a GRS of type (max(k + r,k +
l—-1),1), here r + | = k — 1. In order to maintain the condition (d) in Definition 1, it is
necessary to require ! < [k/2]. If one defines

P@)/Q(e) = 3 el (e) + o () Pie)/ Qo) (2.27)

m=0
where P;(z) and Q;(z) come into being by making the substitution f, , = flz,,z,41, -, 2]
for f,;: in (2.24) and (2.25), and by restricting » + { = k — 1 as well as 1 < [k/2], then
Pi(z)/Qi(z) in (2.27) turns out to be a GRS of type (k + r,1) in the light of Definition 1.

Remark 3 We mention by the way that the GRS defined in (2.26) is also of type (k+r,1),
which is due to the restrictions r + [ = k — 1,1 < [k/2] and the fact [k/2] + [k — 1/2] =
k — 1. The following construction is based on the generalized Q.D.algorithm designed by
Wuytack® and Graves- Morrisl®] (see also [1]).

Construction 7
Let us introduce a notation with wider meaning than one in (2.3) as follows

¢m,u(2) = (1: - 1’1:1)(1: - :cm-}-l) U (:L‘ - 2:u—l), (228)

from which yield ¥, (2 )1fm—1andn—s+1w()( Jifs<km=1landn=s+1,and

_SH'I)( Jif s<km==%k+1and n=+k+s+1 A function g(z) can be expanded into
the following form

9(x) = gy + gy st1¥ss41(2) + - gus¥st(z) + O(Ps241(2)), (2.29)
where
gst = g[z:,,:c,+1,---,:z:g]. (230)
Let

o= o G(E—2) ef(z—2ar1) €5(2 —2s12)  €(2 - Zoi3)
st(gvz) - 1 —_ 1 _ 1 — 1 —- 1

o q[st_,/g]("’ = Typoft—n/2)-2)"
- - 1

ef’t_,/g](m - 2.«:-{—2['-—.’/2]—2) —’U(t - s)qi’g_s.’.l/g](m - zs+2[t—s/2])
- 1 - 1

, (2.31)

where v(t — s) = 0 if t — s is an even number, and v(t — s) = 1 if t — s is an odd number.
The above rational function of type ([t — s/2], [t — s + 1/2]) can be determined by deriving
its coeflicients from the following algorithm:

Initialization For j = s,s + 1,t — 1, define

2] = 2j11 — 2, (2.32)
et = g, (2.33)
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¢ = (2] +94;/90541) 7", (2.34)
el = —gl — ¢t (gled - 1). (2.35)

Recurrence For j = s,s+1,---and m = 2,3,---,[t — s + 1/2], we construct all well-
defined quantities ¢J,, el recursively from the formulas

z:,lu Titom—1 — T542m—2, (236)
j +1 j+1 j+1
q.'i — (:c_‘i _ e:n I(Q;In 1 + e;lu ")(z;’n ;,n 1 1)) (2 37)
- g +1 j+1 ’ .
" " ( 1n 1 + qﬂL I)q;]n 1 ;]n 1
ij+1 j+1 -
e;ln. = an + (zmqm - 1)(6.1171—1 ;,l;*-l)(a’m 1]71 1 1) 1' (238)

The algorithm decribed above aims at obtaining the relations
Rs.i(g;zn) = g(zn)v n = s,s—+— 11"'1t7 (239)

and hence enables one, in virtue of (2.17) and (2.18), to construct three kinds of GRSs as
follows

(A) Pi(=)/Qi(z) = Rwuﬁ),
(B) Pi(z)/Qi(= Z fime1¥1m41(2) + Y1 041(2) R, 26( 75 2),

m=0

k-1

(C) Pi(z)/Qi(m) = Z fk+1,l.-.+m+1¢k+1,k+m+1(-’B) + ¢k+1.2k+1(73).R1,k(f; 23)-

m=0

It is easy to see that (A) is a GRS of type (k — 1, k) while both (B) and (C) are GRss
of type (k + [k —1/2],[k/2]).

Remark 4 Algorithms for rational interpolation, in general, may be classified into those
designed to solve the coefficient problem and those designed to solve the value problem.
For example, the generalized Q.D.algorithm described in Construction 7 is for the purpose
of solving the coefficient problem in the continued fraction of form (2.31). The generalized
e-algorithm ([2]) is a method of entailing the evaluation of P;(z)/Qi(z) in Definition 1
at some prespecified value of z without seeking for the explicit representations of its
coefficients such as in (2.24) and (2.25). This algorithm is based on the formal identity

(2 = Zopear )€ — D)D) — )y =1 (2.40)

for indices s, in the range s = 0,1,2,--- and t > —[s/2]. The initialization conditions are

e =0, t=01,2 -, (2.41)
e =0, s=0,1,2,, (2.42)
ef) = %fl,j’/’l,j(z)- (2.43)
=1
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Consequently a rational interpolant of type (s+t, s) fitting f(z) at zj for j = 1,2,---,2s+

t + 1 is given by eg?, from which are deduced the GRSs egi"__zt) of types (k+u—1,k—u)

with u ranging from 1 — k to k.

3. Direct Construction of the GRS of Type (k —1,k)

We adopt the notations previously introduced without further declaration. Let

Sk.: 1 Z yﬂL "lbl 1n+1( ) (31)

m=0
P(z) = po+p1vh12(2) + - + pr—1¥1,4(2) (3.2)
= Po + P1¥k1,h42(2) + - + Pr—1¥rq1,26(2), (3.3)
Qi(z) = g + a1t 2(z) + - + @Y1 k41(2) (3.4)
= o + O ¥rtrhs2(2) + -+ GWrpr,2e41(2), (3.5)

and denote by Z; the collection of all zeros of Q;(z). If Z; N (X; U X;41) = 0, then it
follows from (3.1)—(3.5) that the condition (b) in Definition 1 is equivalent to

k-1 2%k~1
Zskl )at1 e+1(z) — ZPH/’l,tH(fB) = Z T£1)¢1,t+1(93)- (3.6)
t=0 t=k
Let
51(,11)'11 = Sk,i[wmy e azn], n 2 m (37)
and s,(,i,_),n = 0 for n < m, we have
sk ()1 e ( E S¢+1 e V145 (2)- (3.8)
Substituting (3.8) into (3.6) yields
m 2k—1 m (
Z 1, 41 Z 5J+1 m+19J + Z PViant1 Z Sittm41 D
m=0 m=k J=m—-k+1
2k~1
Z pm¢1 an+1 + Z Tn ¢1 m+1- (39)
m=0 m=k
It follows from (3.9)
P = Zs;(iz)-l,m-{-lqil” m = 0,]_,...,]3_]_’ (310)
j:()
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k
’(711) = E S.'(I.l‘*)‘l,nl—}—lqj’ m:k7k+1:"')2k_1-
j=m—k+1

Similarly we can get from the condition (c) in Definition 1

1
P = Zs.(ll'f'l m+1q_11 m=20,1,---, k-1,

k
T(l) - Z (11:111)7|+1qu m:k1k+1,"',2k—-1,

j=m—k+1
where r( ) ,m=kk+1,---,2k — 1 satisfy the following relation

k k—1 2k—-1

Z Sk z+1(z)qt¢k+1 L+t+1 Z P k+t+1( ) Z FEi)1/1k~1~1,k+z+1(2’)-

t=0 t=0 t=k
From (3.2)-(3.5) we have

k-1
ﬁm = Z Pc¢1,t+1[ﬂ3k+1, Tt ;z1n+k+1];

t=m

Gm = Z qt¢1,t+1[zk+17 T 11:1n+k+1]a

t=m

Putting (3.10),(3.15) and (3.16) into (3.12) results in

va.ﬂj :07 m:0117"'uk_1a

=0
where
k—-m-1
E sJ-H m+t+1¢1,m+t+1[xk+17 T )zk+1‘u+1]
(1+ .
- Z Stmt1¥1. i+1(Zrery 0 Thte)s 0<7<m,
k-1 @)
1
Um,gj = Z 3j+1,t+1¢1,t+1[2k+1, T ,1'k+m+1]
t=j
m+1
Z S ,,.+1¢1,_1+1[33L+1, "y Zhtt]s m+1<j<k-1,
1n+1
1+1 .
Z 5¢m+1¢1 et 1(@h1s s Tty j=k
\
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(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)



Apart from a common factor, we can derive from (3.17)

1 a(z) - rieqa(z)

Vo0 V0,1 Tt Yo,k
Qi(z)=| . A : (3.19)
Vg—10 Vk—11 " Vk—1.k
k-1 ) k-1 @)
k3 1
Yo Stmpr¥imr(®) o Y sYimn(z) 0
m=0 m=k-1
Pi(-’B) = Vo,0 Vo, k-1 o,k (3-20)
V-10 T Ve—-1,k-1 Vk~-1,k

As a result of comparing (3.11) with (3.19), there holds

(¥ ]
0 T 0 sm—k+2,m+1 Tt sk+1,m+1
; V0,0 v Vo, m—k Vo,m—-k+1 tte Yo,k
1) _ i ) , »
Ve—10 ' Uk-lm-k Ve-1m—-k41 °°° VL—1,k

Substituting (3.16) into (3.13) and setting

J+1
— (i+1)
Hj.”l - Z 3t,1u+1¢11.‘i+1[zk+1’ T 2k+t], (322)
t=m—k+2
we obtain
0 e 0 H1n.—k+1,m Tt Hk,m.
. V0,0 T Vo, m—k Vo, m—k+1 e Vo, ke
_(3) _

T1(n) - (323)

Y10 *°° Vk—1lan—k  Yk—lon—k+41 °~°° Vk—1k

Starting from (3.3) and (3.5), one may derive

L rgipse(®) 0 Yrgpr2es1(2)
o,0 Vo1 e Uy k
Qi(z)=| . : L : : (3.24)
Vp_1p0 Vo1, .- U1k
ST 6
141 i+
Z sgi,m+11/)k+1,k+1"-+1(z) e Z sk,n,,+1¢k+l,k+m+1(2) 0
m=0 m=k-1
P,'(:E) = b0 s Uy k-1 Ug & (3.25)
Vr-1,0 o Vp—1,k-1 Dp—1,k
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0 0 Hm—k+1,m T Hk,m
1_)0,0 e ﬁO,m—k ijO,m—k-{-l tet ﬁO,k

i) _
= : : ] (3.26)
V1,0 Uk—ln—k Uk—1pm—k+1 *°° Vk—1k
(i+1) (1+1)
0 e 0 svu—k+2,m+1 e sk+1,1n+1
(i Voo - Uom-k Vo m—k+1 " Uo &
=0 0 me , (3.27)
U100 Uk—tgm—k Tk—1m—k41 0 Vk—1k
where
( k-m-—1 ( )
141
z 3_.,'+1,m+t+1¢k+1,k+1n+t+1[zla T azm-{—l]
t:q
J+1 Q)
1 .
- Z-"g,m+1¢k+1,k+j+1[31, R AN 0<j<m,
t—l
— _ (i+1)
Un,j = Es]+1 i1kt hte1(Z1, ) Bmy) (3.28)
=j
m+1 ()
%) .
- Z st,m+1¢k+1.k+j+1[217 T ,13{,], m+1<)< k-1,
t=1
m+1
- Z 3t1n+1¢‘k+1 L+1[211"',3t], i=k.
\ t=1
i+l )
Y7 1
Hjm = Z Stomp1Pra1 ke[, 2] (3.29)
t=m-k+2

Notice that the Q;(2) in (3.19) and P;(z) in (3.20) are, in general, different from those
in (3.24) and (3.25), nevertheless the ratios P;(z)/Q;(z) are the very same. If Z; N (X; U
Xiy1)=0fori=0,1,---,n — 1, then it follows form (3.6) and (3.14)

P.'+1(“’) (z) uﬁl _(1) pl ) .
Ykt1k+e41(T 3.30
Qita(e) Qw. z) tzzj Qi(=) Qi+1(-"’)) erkssiale) (3.50)
and hence we obtain a general representation for the GRS of type (k — 1, %) and follows
Po(z) =2 1 _(1) (1+1)
R(z) = Qu Z (1) 0; +1( ))¢L:+1.k+t+1(73)+v (3-31)
=0 t=Fk LA !
where
Yrprhses1(2), 2 € U Ty,
. . 2 = . = Y .32
VrLksen(2)s { 0, if z € UjeinT;. (3.32)
4. Some Properties of GRSs
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With the notation in the preceding sections, we have
Theorem 4.1 Any two GRSs of the same type (r,l) are equal.

Proof Assume that R(z) and R*(z) are two GRSs of the same type (r,!) and their expres-
sions restricted on the subinterval T;(i = 0,1, --,n — 1) are P;(z)/Qi(z) and P;*(z)/Qi(z)
respectively. It suffices to verify that Pi(z)/Qi(z) is equal to P/ (z)/Q;(z). It follows from
Definition 1.

Pi(z) Pr(=)

Q) ~ Q3(a) ~ OPn @)
Pi(z) Pr(z) _
az) " Qie) ~ Oenan®)
Let
Ui(z) = Pi(2)Qi(z) - P/ (2)Qi(=), (4.1)
then U;(z) is a polynomial of degree not exceeding 2k — 1 satisfying
Ui(z) = O($1411(2)), (4.2)
Ui(z) = O(¥r+1,2641(2)), (4.3)
therefore
Wik(z) = Ui(z)/¥1,541(2) (4.4)

is a polynomial of degree at most k—1. From (4.3) follows Wir(z;) = 0forj = k+1,---,2k,
which implies Wy (2) = 0 and hence U;(z) = 0, as asserted.

Theorem 4.2 There hold the following determinant identities with respect to the GRS
of type (k — 1,k)

1 Pra(z) - Y1 pga(z) _

Vgp 0 Uop-1
V0,0 Vo1 s Vo k
Y10 0 Vk—1 k-1
VL-1,0 UYk—-11 - Vi—1,k
1 Yreprpsa(z) o g 21(2)

_ _ _ V0,0 e Vo k-1

V0,0 Vo1 co Vo, k
_ _ _ Ve-1,0 "~ Uk-1,k-1
VE—1,0 Vr-1.1 T U1,k

Proof The proof is completed by normalizing the @Q;(2) in (3.19) and in (3.24) to be
monic polynomials respectively and then making them equalized.

Theorem 4.3 Denote R(f;z) = R(z), Pi(f;z) = Pi(z) and Q;(f;z) = Qi(z), then there
holds R(cf;z) = cR(f;z) for any constant ¢, where R(z) is a GRS of type (k — 1,k).
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Proof If ¢ = 0, the conclusion is immediately drawn from Definition 1 since on this
occasion Pi(cf;z) = O(4¢1 x+1(2)), which implies P;(cf;z) = 0, hence R(cf;2) = 0. If ¢ #
0, then it follows from (3.18)-(3.20) that Pi(cf;z) = c** Pi(f;2), Qi(cf;2) = c*Qi(f; z)
and thereby R(cf;z) = cR(f;z).

There is no doubt that the above defined R(f;z) can be regarded as a nonlinear op-
erator with respect to the function f(z), which satisfies the following continuity theorem.

Theroem 4.4 For fixed positive integers k and n, the generalized rational spline operator
R(f;z) of type (k—1,k) is continuous in regard of f on any compact subset X in [a, b] ex-
cluding all possible zeros of [[2} Qi(z), i.e., ||f— f*|| — 0 implies || R(f;-)— R(f*; )|l« — 0,
where [|fl] = maxogicu-1 Shey fl21, 22, -, 2] and | Fllx = maxeex [F(t)).

Proof Since [a,b] = U T3, X C [a,}], wehave X = U’} X; and ||F|jx = maxo<i<n-1 || Fllx,
where X; = XN T;,i=0,1,---,n — 1. Notice that the Vpn,; defined in (3.18) are actually
linear functionals regarding f, which we denote by vy, j(f). It is easy to know from (3.18)
that for 0 < m <k -1,0 < j < kand 0 <7 < n— 1, there exists an absolute positive
constant C such that |v,, ;(f)] < C||f|| for all indices m,j and i within given ranges.
Therefore ||f — f*|] — 0 leads to v, j{(f) = v j(f*) for 0 < m < k-1,0 < j <k and

0 < i< n—1, which ensures Q;(f;z) — Q:(f*;z) and P;(f;z) — P;(f*;z) by (3.19) and
(3.20). The fact that Q;(f;2) has no zero on X; shows that there exists constant d; > 0
such that inf_ 5 [Q:(f;z)| = d; and inf 5 |Q:(f";2)| > d;/2 for f* sufficiently close to

f. Thus it follows from [|f — f*|| — 0 and boundness of {|Q;(f; ")l x, and || Pi(f; )|l %,

IR(f;) — R(f"; )%,

< NPF3 )x, 1Q:(F75 ) = Qi e, + QS5 Nx 1 PS5 ) - PulS-)
= &2

X

— 0,
from which yields what we want to prove.
5. Conclusion

We have presented a few approaches to the construction of generalized rational splines,
which seem to be interesting and might find applications in numerical analysis.

The property of allowing confluence, i.e., allowing § to tend to zero, applies to almost all
the constructions offered in this paper. We mention that some of the methods described in
Section 2 can easily be extended to the cases in which the vector-valued and matrix-valued
rational splines are taken into consideration as treated by Graves-Morris ([4]). Finally we
think that the problems related to the singluar structure of rational splines should be
studied.
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