Therefore c = 0, which implies that  $\mu$  is an invariant measure to  $T_t$ , and by the conclusion of [6] we have  $\mu(dx) = \alpha m(dx)$  for  $\alpha$  being a positive constant.

Thus, the proof of theorem 3.2 has been completed.

Acknowledgement The author is gratefull to Prof. Wang Zi-kun and Prof. Wu Rong for their encouragement. He also thanks all members at stockastic process seminar in Nankai University for their helpful suggestions.

## References

- [1] N.El Karoui and S.Roelley-Coppoletta, Study of a General class of measure-valued branching processes, a Lévy-Hincin representation, Stoch. Proc. Appl., 1991.
- [2] P.J.Fitzsimmon, Construction and regularity of measure-valued Markov branching processes , Isr. J. Math., 64(1988), 337-361.
- [3] I.Iscoe. A weighted occupation time for a class of Measure-valued branching process, Probab. Th. Rel. Field, 71(1986), 85-116.
- [4] A.Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin Heilberg New York, 1983.
- [5] N.Konnô and T.Shiga, Stochastic partial differential equation for some Measure-valued diffusions, Th. Rel. Fields, 79(1988), 201-225.
- [6] Xiong Jie, The  $\sigma$ -finite invariant measure for the diffusion processes, Acta. Sci. Nat. Univ. Pek. Vol.24, No.3, 1988.

# 一类测度值分支过程的不变特性

王永进 (天津南开大学数学系, 300071)

### 樀

空间齐次性是  $R^d$  上 Lévy 过程的一个重要特性,本文考虑超 Lévy 过程的类似性质,即 是分布意义下的平移不变性,并且对一类特殊的测度值分支过程当其初始测度是 Lebesgue 测度时,得到了更强的结果.

## The Invariant Characters of One Class of Measure-valued Branching Processes \*

Wang Yongjin

(Department of Mathematics, Nankai University, Tianjin 300071)

Abstract The spatial homogeneity is an important character for Lévy-processes on Euclidean space  $\mathbb{R}^d$ . The analogy for the Measure-valued branching processes over Lévy processes (also called Super-Lévy processes) will be discussed in this paper. That is the translation-invariant in the sense of distributions. Moreover some stronger results are also derived for the special Measure-valued branching processes when their initial measures are given by the Lebesgue measure.

**Keywords** measure-valued branching processes, translation-invariant, invariant measure, relatively invariant processes.

Classification AMS(1991) 60J25,60G80/CCL O211.62

#### 1 Introduction

The measure-valued branching process (MBP) arises as the high density limit of a certain branching particle system. The general MBP have been constructed by El Karoui and Roelly-Coppoletta<sup>[1]</sup>, Fitzsimmons<sup>[2]</sup> and so on. In this paper we follow the definition of El Karoui and Roelley-Coppoletta.

Firstly, we introduce some notations:

Let  $C_b$  denote all continuous functions on  $R^d$ , and  $C_0^\infty$  be the space of functions on  $R^d$  having infinite-order derivatives and vanishing at infinity,  $C_c^\infty(R^d)$  denote all continuous function having compact support and infinite-order derivations.  $M(R^d)$  denotes the space of all Radon measures on  $R^d$ . We call  $g_p(x) = \frac{1}{(1+|x|^2)^{p/2}}(p>d)$  a reference function and set

$$M_p(R^d) = \{ \mu \in M(R^d) : (1+x^2)^{-p/2} \mu(dx) \text{ is a finite measure} \},$$
  $C_p(R^d) = \{ f \in C(R^d) : \|f/g_p\|_{\max} < \infty \},$ 

for  $f \in C_C^\infty(R^d)$ , we also define  $\langle \mu, f \rangle = \int_{R^d} f(x) \mu(dx)$ .

For notations not defined here refer to [1].

We now turn to Meauser-valued branching processes.

<sup>\*</sup>Received Nov.20, 1993.

Let A be the strong generator of a Feller semigroup  $T_t$  on  $C(\mathbb{R}^d)$  with domain D(A). Let  $\Psi(x,\cdot)$  be a branching function defined by

$$\Psi(x,z)=a(x)+b(x)z-c(x)/2z^2-\int_{(0,\infty)}(e^{-z\lambda}-1+z\lambda I_{\{0<\lambda\leq 1\}})
u(x,d\lambda)$$

with the coefficients satisfying the following conditions:

a(x), b(x), c(x) belong to  $C_b(R^d)$ , and a(x), b(x) are non-negative. The measure  $\nu$  satisfies  $\int_{(0,\infty)} (\lambda^2 \wedge 1) \nu(x, d\lambda) < \infty$  and is sufficiently regular on x to get  $z \to R(x, z)$  being a continuous function uniformly on x.

Based on A and  $\Psi$ , a Measure-valued branching process  $X_t$  on  $M_p(\mathbb{R}^d)$  has been constructed by El Karoui and Roelley-Coppoletta<sup>[1]</sup>, and the Laplace functional of  $X_t$  can be expressed as follows

$$E_{\mu} \exp\{-\langle X_t, f \rangle\} = \exp\{-\langle \mu, V_t f \rangle\}, \tag{1.1}$$

where  $V_t f$  satisfies the equation or

$$egin{align} V_t f - \int_0^t T_{t-s}(\Psi(V_s f(x))) ds &= T_t f, \ f \in C_0^\infty(\mathbb{R}^d)^+, \ & rac{\partial V_t f}{\partial t} = A V_t f + \Psi(V_t f), \quad V_0 f = f. \end{cases}$$

The purpose of this paper is to find some invariant characters for the Measure-valued branching processes when their originial processes are spatially homogenous processes on  $\mathbb{R}^d$ . After introducing the MBP and giving some notations in the first section, we shall discuss, in section 2, the invariant character in the sense of distributions for the Measure-valued branching Lévy processes (Super-Lévy processes). and at the end of section 2, we also derive a stronger result for special MBP. In section 3 we shall show a uniqueness theorem for the relatively invariant Measure-valued branching Brownian motion (defined in section 3) and extend it to Measure- valued branching diffusion processes.

In what follows, we assume that the branching functions  $\Psi(z) = bz - c/2z^2$ , (b and c are two constant numbers, c > 0).

# 2. The translation-invariant character for Measure-valued branching Lévy processes

Theorem 2.1 Let  $X_t$  be a measure-valued branching Lévy process with branching function  $\Psi(z) = bz - c/2z^2$ , and the initial measure be the Lebesgue measure on  $\mathbb{R}^d$ . Then  $X_t$  is translation-invariant in the sense of distribution w.r.t  $P_m$ , i.e.,

$$X_t(A) \stackrel{d}{=} X_t(A+y), \ \ \forall A \in B(R^d), \forall y \in R^d$$

**Proof** (1.1) implies that

$$V_t f(x) - \int_0^t \int_{R^d} p(t - s, x, z) \Psi(V_s f(z)) dz ds = T_t f(x).$$

$$- 510 -$$
(2.2)

As we know that there is a unique positive solution to (1.1), also to  $(2.2)^{[2]}$ . If replacing x by x + y in (2.2), we have

$$(V_t f)(x+y) - \int_0^1 \int_{R^d} p(t-s, x+y, z) \Psi(V_s(f(z)) dz ds = (T_t f)(x+y). \tag{2.3}$$

On the other hand, if using f(x+y) instead of f(x) in (2.2), then we obtain

$$V_t f(\cdot + y) - \int_0^t \int_{R^d} p(t - s, x, z) \Psi(V_s f(z + y)) dz ds = T_t f(\cdot + y). \tag{2.4}$$

Noting that p(t, x + y, z) = p(t, x, z - y), hence we have

$$(T_tf)(x+y)=\int_{R^d}p(t,x+y,z)f(z)dz=\int_{R^d}p(t,x,z-y)f(z)dz=T_tf(\cdot+y)$$

and

$$\int_{R^d} p(t-s,x+y,z) \Psi(V_s f(z)) dz = \int_{R^d} p(t-s,x,z) \Psi((V_s f)(z+y)) dz.$$

Thus is follows from (2.3) that

$$(V_t f)(x+y) - \int_0^t \int_{R^d} p(t-s,x,z) \Psi((V_s f)(z+y)) dz ds = T_t f(x+y).$$
 (2.5)

By contrasting (2.5) with (2.4), and using the uniqueness of the solution of (2.2) we have

$$(V_t f)(x+y) = V_t (f(\cdot + y))(x)$$

for any  $y \in \mathbb{R}^d$ , t > 0.

Recall the equation (1.1), we also have

$$E_m \exp\{-\langle X_t(\cdot), f(\cdot + y)\rangle\} = \exp\{-\langle m(\cdot), (V_t f(\cdot + y))\rangle\} = \exp\{-\langle m(\cdot), (V_t f)(\cdot + y)\rangle\}$$
$$= \exp\{-\langle m(\cdot), V_t f(\cdot)\rangle\} = E_m \exp\{-\langle X_t(\cdot), f(\cdot)\rangle\}$$

which implies

$$E_m \exp\{-\langle X_t(\cdot + y), f(\cdot)\rangle\} = E_m \exp\{-\langle X_t(\cdot), f(\cdot)\rangle\}.$$

Hence  $X_t(\cdot + y) \stackrel{d}{=} X_t(\cdot)$ ,  $P_m, \forall y \in \mathbb{R}^d$  and by the arbitrarity of f, this also implies

$$X_t(A) \stackrel{d}{=} X_t(A+y), P_m, \ \forall A \subset R^d, \forall y \in R^d.$$

Thus we complete the proof of the theorem.  $\Box$ 

Based on theorem 2.1, we try to develop the results in spacial cases. To do so, we need the following lemma whose proof was essentially due to Konnô and Shiga<sup>[5]</sup>.

**Lemma 2.1** Let  $X_t$  be a Super-symmetric Lévy process with branching functions  $\Psi(z) = bz - \frac{c}{2}z^2$ , and suppose that  $\int_0^T p(s,0)ds < \infty$ ,  $\forall T > 0, P(X_0 = m) = 1$ . Then  $X_t$  is absolutely continuous with respect to the Lebesgue measure m.

Proof Applying Fitzsimmon's results [3] of second-order moments of superprocesses, we have

$$egin{array}{lll} E_{\mu}\langle X_t,f
angle^2 &=& \langle \mu(\cdot), E(\exp\{\int_0^b b(\xi_s)ds\}f(\xi_t))
angle^2 \ &+& \int_0^t \langle \mu P_{t-s}(\cdot), c(\cdot)(E(\exp\{\int_0^s b(\xi_r)dr\}f(\xi_s)))^2
angle ds. \end{array}$$

If  $b(z) \equiv b, c(z) \equiv c, \mu = m$ , then

$$egin{array}{lcl} E_m\langle X_t,f
angle^2 &=& \exp\{2bt\}\langle m,T_tf
angle^2+c\int_0^t\langle mT_{t-s},\exp\{2bs\}(T_sf)^2
angle ds \ &=& \exp\{2bt\}\langle m,f
angle^2+c\int_0^t\exp\{2bs\}\langle m,(T_sf)^2
angle ds. \end{array}$$

On the other hand, let  $X_t^h(x) \equiv \langle X_t(\cdot), p(h, x, \cdot) \rangle$ , we have that

$$egin{aligned} &\int_{R^d} E_m(X^h_t(x))^2 g_p(x) dx \ &= \int_{R^d} \exp\{2bt\} g_p(x) dx + c \int_{R^d} g_p(x) \int_0^t \exp\{2bs\} \langle m, (T_s ph)^2 
angle ds dx \ &= \exp\{2bt\} \int_{R^d} rac{1}{(1+x^2)^{p/2}} dx + c \int_0^t \exp\{2bs\} p_{2s+2h}(o) ds \int_{R^d} g_p(x) ds \ &\leq \exp\{2bt\} (1+c \int_{2h}^{2t+2h} p_s(o) ds) \int_{R^d} rac{1}{(1+x^2)^{p/2}} dx < +\infty \; (p>d), \end{aligned}$$

and

$$egin{aligned} &\int_{R^d} E_{in}(X_t^{h_1}(x)-X_t^{h_2}(x))^2 g_p(x) dx \ &=\int_{R^d} c \int_0^t \exp\{2bs\} \int_{R^d} [p_{s+h_1}(x,y)-p_{s+h_2}(x,y)]^2 dy ds g_p(x) dx \ &=c\int_{R^d} \int_0^t \exp\{2bs\} [p_{2s+2h_1}(0)-2p_{2s+h_1+h_2}(0)+p_{2s+2h_2}(0)] ds g_p(x) dx \ &\leq \int_{R^d} g_p(x) dx \exp\{2bs\} [(\int_{2h_1}^{h_1+h_2}-\int_{h_1+h_2}^{2h_2}+\int_{2t+h_1+h_2}^{2t+2h_2}-\int_{2t+2h_2}^{2t+h_1+h_2}) p(s,0) ds] \ &\quad (h_2>h_1>0) \ &\rightarrow 0(h_1,h_2\downarrow 0). \end{aligned}$$

(by the integrablity of p(s,0) on [0,T]).

Therefore there is an  $X_t(x)$  such that

$$\int_{R^d} E_m(X_t^h(x)-X_t(x))^2 g_p(x) dx \to 0, \text{ when } h \to 0.$$

But for any  $\phi \in C_C^\infty(R^d), (X_t^h, \phi) = \int_{R^d} X_t^h(x) \phi(x) dx \to \langle X_t, \phi \rangle (h \to 0)$ , so we have

$$egin{aligned} E_m |\langle X_t, \phi 
angle - \int_{R^d} X_t(x) \phi(x) dx|^2 &= E_m (\lim_{h\downarrow 0} |\langle X_t^h, \phi 
angle - \int_{R^d} X_t(x) \phi(x) dx|) \ &\leq \lim_{h\downarrow 0} \int_{R^d} E_m |X_t^h(x) - X_t(x)|^2 g_p(x) dx \int_{R^d} g_p^{-1}(x) (\phi(x))^2 dx 
ightarrow 0 (h\downarrow 0), \end{aligned}$$

**—** 512 **—** 

namely  $\langle X_t, \phi \rangle = \int_{\mathbb{R}^d} X_t(x) \phi(x) dx$  a.s.,  $P_m$ .

Remark 2.1 When d=1, Super-Brownian motion and Super  $\alpha$ - symmetric stable process  $(1 < \alpha < 2)$  satisfy the conditions of Lemma 2.1.

Particularly, let c=0 in lemma 2.2 we know that  $V_t$  in (1.1) is linear, hence

$$\begin{split} E_m | \exp\{-\langle X_t(\cdot), f(\cdot + y)\rangle\} - \exp\{-\langle X_t(\cdot), f(\cdot)\rangle\}|^2 \\ &= E_m \exp\{-\langle X_t(\cdot), 2f(\cdot + y)\rangle\} - 2E_m \exp\{-\langle X_t(\cdot), f(\cdot + y) + f(\cdot)\rangle\} \\ &+ E_m \exp\{-\langle X_t(\cdot), 2f(\cdot)\rangle\} \\ &= \exp\{-\langle m, V_t(2f(\cdot + y))\rangle\} - 2\exp\{-\langle m, V_t(f((\cdot + y) + f(\cdot))\rangle\} \\ &+ \exp\{-\langle m, V_t(2f(\cdot))\rangle\} \\ &= 2\exp\{-\langle m, V_t(2f(\cdot))\rangle\} - 2\exp\{-\langle m, 2V_t f\rangle\} = 0, \end{split}$$

in enely

$$\langle X_t(\cdot), f(\cdot + y) \rangle = \langle X_t(\cdot), f(\cdot + y) \rangle = \langle X_t(\cdot), f(\cdot) \rangle, \text{ a.s., } P_m.$$
 (2.6)

It seems that the exceptional set in (2.6) depends on f and y, but as a matter of fact, it does not. This could be explained as follows.

Suppose  $S = \{y_n, n > 0\}$  be the set of all rational points in  $\mathbb{R}^d$ . For fixed  $f \in C_c^{\infty}(\mathbb{R}^d)$ , we have

$$\langle X_t(\cdot), f(\cdot + y) \rangle = \langle X_t(\cdot), f(\cdot) \rangle \forall y \in S \text{ on } N_1, P_m(N_1) = 1$$

and if  $y_0 \notin S$ ,

$$\langle X_t(\cdot), f(\cdot + y_1) \rangle = \lim_{y_n \to y_0} \langle X_t(\cdot), f(\cdot + y_n) \rangle = \langle X_t(\cdot), f(\cdot) \rangle$$

by the continuity of f.

Moreover, from the separablity of the space  $C_c^{\infty}(\mathbb{R}^d)$  we can deduce by the same way as above that, on  $N_2, \langle X_t, f(\cdot + y) \rangle = \langle X_t, f(\cdot) \rangle$ , for any  $f \in C_c^{\infty}(\mathbb{R}^d)$ , where  $P_m(N_2) = 1$ . Therefore for any  $y \in \mathbb{R}^d$  and any  $f \in C_c^{\infty}$ , on  $N_1 \cap N_2$ , we get

$$\langle X_t, f(\cdot + y) \rangle = \langle X_t, f(\cdot) \rangle$$

in addition,  $\langle X_t, f \rangle = \int_{\mathbb{R}^d} X_t(x) f(x) dx$ , so we have, on  $N = N_1 \cap N_2$ , for any y and f

$$\int_{R^d} X_t(x) f(x) dx = \int_{R^d} X_t(x) f(x+y) dx = \int_{R^d} X_t(x-y) f(x) dx,$$

i.e.,  $\int_{R^d} [X_t(x) - X_t(x-y)] f(x) dx = 0.$ 

From the arbitrarity of  $y \in \mathbb{R}^d$  and  $f \in C_G^{\infty}$ , it follows that

$$X_t(x_1) = X_t(x_2)$$
, a.e.,  $x_1, x_2 \in \mathbb{R}^d$ .

Hence there is a random variable  $c_t$  taking values in R such that

$$X_t(dx)=c_t m(dx) \text{ for } t>0.$$

Thus we obtain

**—** 513 **—** 

Proposition 2.1 Let  $X_t$  be a Measure-valued branching Lévy process with branching function  $\Psi(z) = bz$ , and assume that the conditions in theorem 2.1 and Lemma 2.2 hold. Then

$$P_m(X_t = c_t m) = 1, \text{ for fixed } t > 0, \tag{2.7}$$

where  $c_t$  is a ramdom variable taking values in  $R^+$ .

The Measure-valued branching process satisfying the last identity is called a relatively invariant process.

# 3. The uniqueness theorems of the initial measures for the relatively invariant processes

Motivated by the uniqueness problem of invariant measure for Markov process on  $\mathbb{R}^d$ , we shall consider the similar problem for a relatively invariant measure-valued branching process in this section. Now we give our main results.

Theorem 3.1 Let  $X_t$  be a Measure-valued branching Brownian motion with branching function  $\Psi(z) = bz - c/2z^2$ . If the process is relatively invariant with the initial measure  $\mu$ . Then  $\mu = \alpha m$ , ( $\alpha$  is a positive constant, m is the Lebesgue measure on  $\mathbb{R}^d$ ).

Furthermore, we can extend this conclusion to a class of Measure-valued branching diffiusion processes. That is

#### Theorem 3.2 Suppose that

1.  $\xi_t$  is an L-diffusion process with transition density p(t,x,y) satisfying

$$\frac{1}{\nu_3(2\pi t)^{d/2}}e^{-\frac{\nu_4|x-y|^2}{2t}} \leq p(t,x,y) \leq \frac{1}{\nu_1(2\pi t)^{d/2}}e^{-\frac{\nu_2|x-y|^2}{2t}} \ \ (\nu_1,\nu_2,\nu_3,\nu_4>0).$$

- 2.  $X_t$  is a Measure-valued branching process on  $M_p(\mathbb{R}^d)$  over  $\xi_t$  with the branching function  $\Psi(z) = bz \frac{1}{2}cz^2$ .
- 3.  $P_{\mu}(X_t = c_t \mu) = 1, \forall t > 0, \mu \in M_p(\mathbb{R}^d)$ , for fixed  $t, c_t$  is a random variable taking values in R.

Then  $\mu = \alpha m(\alpha \text{ is a constant}, m \text{ is the Lebesgue measure on } \mathbb{R}^d)$ .

Remark 3.1 To prove the theorem, we need an analytic fact: Let  $\alpha(t)$ , (t > 0 be a continuous function, and

$$\alpha(t_1+t_2)=\alpha(t_1)\alpha(t_2),\alpha(t)>0.$$

Then there exists a positive c, such that  $\alpha(t) = e^{-ct}$ .

**Proof of theorem 3.2** According to Fitzsimmon<sup>[1]</sup>, we know that

- 1.  $X_t$  is a continuous process in the topology of vague convergence.
- 2.  $E_{\mu}\langle X_t, f \rangle = \langle \mu, e^{-bt}T_t f \rangle, \forall f \in C_c^{\infty}(\mathbb{R}^d).$

Hence, by the assumption 3 of theorem 3.2, we have

$$\langle \mu, e^{-bt} T_t f \rangle = E_{\mu} \langle c_t \mu, f \rangle = E_{\mu} (c_t) \langle \mu, f \rangle.$$

-- 514 ---

Let  $\alpha(t) = e^{bt} E_{\mu}(c_t)$ , and suppose that  $u \not\equiv 0$ , then we can take a positive function  $f \in C_C^{\infty}$  such that  $\langle \mu, f \rangle > 0$ .

Since  $T_t f(x)$  is continuous in t, we can take two positive number  $t_0$  and  $\delta$  satisfying  $t_0 - \delta > 0$ , by assumption 1 of the theorem, we are easy to find that for N > 0 large enough and  $t \in (t_0 - \delta, t_0 + \delta)$ 

$$T_t f(x) \le ||f|| \int_{\text{supp} f} p(t, x, y) dy \le m(\text{supp}(f)) ||f|| c \frac{1}{(1 + |x|^2)^{p/2}} (|x| \ge N)$$
  
 $T_t f(x) \le ||f||, (x \le N).$ 

Since  $\langle \mu, \frac{1}{(1+|x|^2)^{\mu/2}} \rangle < \infty$ , then it follows from the dominated convergence theorem that  $\langle \mu, T_t f(x) \rangle$  is continuous in  $(t_0 - \delta, t_0 + \delta)$ , and so in  $(0, \infty)$ , which also implies that  $\alpha(t)$  is continuous on  $(0, \infty)$ . Besides,  $\mu T_t = \alpha(t)\mu$  (clear  $\alpha(t) > 0$ ) and

$$\alpha(t_1+t_2)=\mu T_{t_1+t_2}=(\mu T_{t_1})T_{t_2}=\alpha(t_1)\mu T_{t_2}=\alpha(t_1)\alpha(t_2),$$

so we conclude that  $\alpha(t) = e^{-ct}$  by lemma 2.2.

In what follows, we intend to prove c = 0.

If  $c \notin 0$ , we consider the following two cases.

1. Assume c>0, we choose a bounded  $A\in B(R)$  with  $\mu(A)>0$ , then

$$egin{array}{lll} \mu(A) &=& e^{nct} \mu T_{nt}(A) \geq e^{nct} \int_{R^d} \mu(dx) \int_A p(nt,x,y) dy \ &\geq & e^{nct} \int_{R^d} \mu(dx) \int_A rac{1}{
u_3 (2\pi nt)^{d/2}} e^{-rac{
u_4 |x-y|^2}{2\pi t}} dy \ &\geq & e^{nct} m(A) \inf_{y \in A} rac{1}{
u_3 (2\pi nt)^{d/2}} e^{-rac{
u_4 |y|^2}{2\pi t}} \int_{R^d} e^{-rac{
u_4 |x|^2}{2\pi t}} \mu(dx) \ &\geq & m(A) \inf_{y \in A} e^{-rac{
u_4 |y|^2}{2\pi t}} rac{e^{rac{1}{2}nct}}{
u_3 (2\pi nt)^{d/2}} \int_A e^{-rac{
u_4 |x|^2}{2\pi t}} + rac{1}{2}nct} \mu(dx) \ &\to & \infty (n\uparrow +\infty) \end{array}$$

2. Assume c < 0, we let  $\mu(A) > 0$ , then

$$\begin{array}{ll} \mu(A) & = & \frac{\mu T_{nt}(A)}{e^{n|c|t}} \\ & \leq & \frac{1}{e^{n|c|t}} \int_{R^d} \mu(dx) \int_A \frac{e^{-\nu_2 \frac{|x-y|^2}{2nt}}}{\nu_1 (2\pi nt)^{d/2}} dy \\ & \leq & m(A) \sup_{y \in A} e^{\nu_2 \frac{|y|^2}{2nt}} \frac{e^{-n|c|t}}{\nu_1 (2\pi nt)^{d/2}} \int_{R^d} e^{-\nu_2 \frac{|x|^2}{2nt}} \mu(dx) \\ & \leq & m(A) \sup_{y \in A} e^{\nu_2 \frac{|y|^2}{2nt}} \frac{e^{-n|c|t}}{\nu_1 (2\pi nt)^{d/2}} \int_{R^d} \frac{\mu(dx)}{1 + \nu_2 \frac{|x|^2}{2nt} + \dots + \frac{1}{[p]!} (\nu \frac{|x|^2}{2nt})^{[p]}} \\ & \to & 0(n \uparrow + \infty) \end{array}$$

which contradicts with  $\mu(A) > 0$ .

Therefore c = 0, which implies that  $\mu$  is an invariant measure to  $T_t$ , and by the conclusion of [6] we have  $\mu(dx) = \alpha m(dx)$  for  $\alpha$  being a positive constant.

Thus, the proof of theorem 3.2 has been completed.

Acknowledgement The author is gratefull to Prof. Wang Zi-kun and Prof. Wu Rong for their encouragement. He also thanks all members at stockastic process seminar in Nankai University for their helpful suggestions.

## References

- [1] N.El Karoui and S.Roelley-Coppoletta, Study of a General class of measure-valued branching processes, a Lévy-Hincin representation, Stoch. Proc. Appl., 1991.
- [2] P.J.Fitzsimmon, Construction and regularity of measure-valued Markov branching processes , Isr. J. Math., 64(1988), 337-361.
- [3] I.Iscoe. A weighted occupation time for a class of Measure-valued branching process, Probab. Th. Rel. Field, 71(1986), 85-116.
- [4] A.Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin Heilberg New York, 1983.
- [5] N.Konnô and T.Shiga, Stochastic partial differential equation for some Measure-valued diffusions, Th. Rel. Fields, 79(1988), 201-225.
- [6] Xiong Jie, The  $\sigma$ -finite invariant measure for the diffusion processes, Acta. Sci. Nat. Univ. Pek. Vol.24, No.3, 1988.

# 一类测度值分支过程的不变特性

王永进 (天津南开大学数学系, 300071)

### 樀

空间齐次性是  $R^d$  上 Lévy 过程的一个重要特性,本文考虑超 Lévy 过程的类似性质,即 是分布意义下的平移不变性,并且对一类特殊的测度值分支过程当其初始测度是 Lebesgue 测度时,得到了更强的结果.