Therefore c = 0, which implies that μ is an invariant measure to T_t , and by the conclusion of [6] we have $\mu(dx) = \alpha m(dx)$ for α being a positive constant. Thus, the proof of theorem 3.2 has been completed. Acknowledgement The author is gratefull to Prof. Wang Zi-kun and Prof. Wu Rong for their encouragement. He also thanks all members at stockastic process seminar in Nankai University for their helpful suggestions. ## References - [1] N.El Karoui and S.Roelley-Coppoletta, Study of a General class of measure-valued branching processes, a Lévy-Hincin representation, Stoch. Proc. Appl., 1991. - [2] P.J.Fitzsimmon, Construction and regularity of measure-valued Markov branching processes , Isr. J. Math., 64(1988), 337-361. - [3] I.Iscoe. A weighted occupation time for a class of Measure-valued branching process, Probab. Th. Rel. Field, 71(1986), 85-116. - [4] A.Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin Heilberg New York, 1983. - [5] N.Konnô and T.Shiga, Stochastic partial differential equation for some Measure-valued diffusions, Th. Rel. Fields, 79(1988), 201-225. - [6] Xiong Jie, The σ -finite invariant measure for the diffusion processes, Acta. Sci. Nat. Univ. Pek. Vol.24, No.3, 1988. # 一类测度值分支过程的不变特性 王永进 (天津南开大学数学系, 300071) ### 樀 空间齐次性是 R^d 上 Lévy 过程的一个重要特性,本文考虑超 Lévy 过程的类似性质,即 是分布意义下的平移不变性,并且对一类特殊的测度值分支过程当其初始测度是 Lebesgue 测度时,得到了更强的结果. ## The Invariant Characters of One Class of Measure-valued Branching Processes * Wang Yongjin (Department of Mathematics, Nankai University, Tianjin 300071) Abstract The spatial homogeneity is an important character for Lévy-processes on Euclidean space \mathbb{R}^d . The analogy for the Measure-valued branching processes over Lévy processes (also called Super-Lévy processes) will be discussed in this paper. That is the translation-invariant in the sense of distributions. Moreover some stronger results are also derived for the special Measure-valued branching processes when their initial measures are given by the Lebesgue measure. **Keywords** measure-valued branching processes, translation-invariant, invariant measure, relatively invariant processes. Classification AMS(1991) 60J25,60G80/CCL O211.62 #### 1 Introduction The measure-valued branching process (MBP) arises as the high density limit of a certain branching particle system. The general MBP have been constructed by El Karoui and Roelly-Coppoletta^[1], Fitzsimmons^[2] and so on. In this paper we follow the definition of El Karoui and Roelley-Coppoletta. Firstly, we introduce some notations: Let C_b denote all continuous functions on R^d , and C_0^∞ be the space of functions on R^d having infinite-order derivatives and vanishing at infinity, $C_c^\infty(R^d)$ denote all continuous function having compact support and infinite-order derivations. $M(R^d)$ denotes the space of all Radon measures on R^d . We call $g_p(x) = \frac{1}{(1+|x|^2)^{p/2}}(p>d)$ a reference function and set $$M_p(R^d) = \{ \mu \in M(R^d) : (1+x^2)^{-p/2} \mu(dx) \text{ is a finite measure} \},$$ $C_p(R^d) = \{ f \in C(R^d) : \|f/g_p\|_{\max} < \infty \},$ for $f \in C_C^\infty(R^d)$, we also define $\langle \mu, f \rangle = \int_{R^d} f(x) \mu(dx)$. For notations not defined here refer to [1]. We now turn to Meauser-valued branching processes. ^{*}Received Nov.20, 1993. Let A be the strong generator of a Feller semigroup T_t on $C(\mathbb{R}^d)$ with domain D(A). Let $\Psi(x,\cdot)$ be a branching function defined by $$\Psi(x,z)=a(x)+b(x)z-c(x)/2z^2-\int_{(0,\infty)}(e^{-z\lambda}-1+z\lambda I_{\{0<\lambda\leq 1\}}) u(x,d\lambda)$$ with the coefficients satisfying the following conditions: a(x), b(x), c(x) belong to $C_b(R^d)$, and a(x), b(x) are non-negative. The measure ν satisfies $\int_{(0,\infty)} (\lambda^2 \wedge 1) \nu(x, d\lambda) < \infty$ and is sufficiently regular on x to get $z \to R(x, z)$ being a continuous function uniformly on x. Based on A and Ψ , a Measure-valued branching process X_t on $M_p(\mathbb{R}^d)$ has been constructed by El Karoui and Roelley-Coppoletta^[1], and the Laplace functional of X_t can be expressed as follows $$E_{\mu} \exp\{-\langle X_t, f \rangle\} = \exp\{-\langle \mu, V_t f \rangle\}, \tag{1.1}$$ where $V_t f$ satisfies the equation or $$egin{align} V_t f - \int_0^t T_{t-s}(\Psi(V_s f(x))) ds &= T_t f, \ f \in C_0^\infty(\mathbb{R}^d)^+, \ & rac{\partial V_t f}{\partial t} = A V_t f + \Psi(V_t f), \quad V_0 f = f. \end{cases}$$ The purpose of this paper is to find some invariant characters for the Measure-valued branching processes when their originial processes are spatially homogenous processes on \mathbb{R}^d . After introducing the MBP and giving some notations in the first section, we shall discuss, in section 2, the invariant character in the sense of distributions for the Measure-valued branching Lévy processes (Super-Lévy processes). and at the end of section 2, we also derive a stronger result for special MBP. In section 3 we shall show a uniqueness theorem for the relatively invariant Measure-valued branching Brownian motion (defined in section 3) and extend it to Measure- valued branching diffusion processes. In what follows, we assume that the branching functions $\Psi(z) = bz - c/2z^2$, (b and c are two constant numbers, c > 0). # 2. The translation-invariant character for Measure-valued branching Lévy processes Theorem 2.1 Let X_t be a measure-valued branching Lévy process with branching function $\Psi(z) = bz - c/2z^2$, and the initial measure be the Lebesgue measure on \mathbb{R}^d . Then X_t is translation-invariant in the sense of distribution w.r.t P_m , i.e., $$X_t(A) \stackrel{d}{=} X_t(A+y), \ \ \forall A \in B(R^d), \forall y \in R^d$$ **Proof** (1.1) implies that $$V_t f(x) - \int_0^t \int_{R^d} p(t - s, x, z) \Psi(V_s f(z)) dz ds = T_t f(x).$$ $$- 510 -$$ (2.2) As we know that there is a unique positive solution to (1.1), also to $(2.2)^{[2]}$. If replacing x by x + y in (2.2), we have $$(V_t f)(x+y) - \int_0^1 \int_{R^d} p(t-s, x+y, z) \Psi(V_s(f(z)) dz ds = (T_t f)(x+y). \tag{2.3}$$ On the other hand, if using f(x+y) instead of f(x) in (2.2), then we obtain $$V_t f(\cdot + y) - \int_0^t \int_{R^d} p(t - s, x, z) \Psi(V_s f(z + y)) dz ds = T_t f(\cdot + y). \tag{2.4}$$ Noting that p(t, x + y, z) = p(t, x, z - y), hence we have $$(T_tf)(x+y)=\int_{R^d}p(t,x+y,z)f(z)dz=\int_{R^d}p(t,x,z-y)f(z)dz=T_tf(\cdot+y)$$ and $$\int_{R^d} p(t-s,x+y,z) \Psi(V_s f(z)) dz = \int_{R^d} p(t-s,x,z) \Psi((V_s f)(z+y)) dz.$$ Thus is follows from (2.3) that $$(V_t f)(x+y) - \int_0^t \int_{R^d} p(t-s,x,z) \Psi((V_s f)(z+y)) dz ds = T_t f(x+y).$$ (2.5) By contrasting (2.5) with (2.4), and using the uniqueness of the solution of (2.2) we have $$(V_t f)(x+y) = V_t (f(\cdot + y))(x)$$ for any $y \in \mathbb{R}^d$, t > 0. Recall the equation (1.1), we also have $$E_m \exp\{-\langle X_t(\cdot), f(\cdot + y)\rangle\} = \exp\{-\langle m(\cdot), (V_t f(\cdot + y))\rangle\} = \exp\{-\langle m(\cdot), (V_t f)(\cdot + y)\rangle\}$$ $$= \exp\{-\langle m(\cdot), V_t f(\cdot)\rangle\} = E_m \exp\{-\langle X_t(\cdot), f(\cdot)\rangle\}$$ which implies $$E_m \exp\{-\langle X_t(\cdot + y), f(\cdot)\rangle\} = E_m \exp\{-\langle X_t(\cdot), f(\cdot)\rangle\}.$$ Hence $X_t(\cdot + y) \stackrel{d}{=} X_t(\cdot)$, $P_m, \forall y \in \mathbb{R}^d$ and by the arbitrarity of f, this also implies $$X_t(A) \stackrel{d}{=} X_t(A+y), P_m, \ \forall A \subset R^d, \forall y \in R^d.$$ Thus we complete the proof of the theorem. \Box Based on theorem 2.1, we try to develop the results in spacial cases. To do so, we need the following lemma whose proof was essentially due to Konnô and Shiga^[5]. **Lemma 2.1** Let X_t be a Super-symmetric Lévy process with branching functions $\Psi(z) = bz - \frac{c}{2}z^2$, and suppose that $\int_0^T p(s,0)ds < \infty$, $\forall T > 0, P(X_0 = m) = 1$. Then X_t is absolutely continuous with respect to the Lebesgue measure m. Proof Applying Fitzsimmon's results [3] of second-order moments of superprocesses, we have $$egin{array}{lll} E_{\mu}\langle X_t,f angle^2 &=& \langle \mu(\cdot), E(\exp\{\int_0^b b(\xi_s)ds\}f(\xi_t)) angle^2 \ &+& \int_0^t \langle \mu P_{t-s}(\cdot), c(\cdot)(E(\exp\{\int_0^s b(\xi_r)dr\}f(\xi_s)))^2 angle ds. \end{array}$$ If $b(z) \equiv b, c(z) \equiv c, \mu = m$, then $$egin{array}{lcl} E_m\langle X_t,f angle^2 &=& \exp\{2bt\}\langle m,T_tf angle^2+c\int_0^t\langle mT_{t-s},\exp\{2bs\}(T_sf)^2 angle ds \ &=& \exp\{2bt\}\langle m,f angle^2+c\int_0^t\exp\{2bs\}\langle m,(T_sf)^2 angle ds. \end{array}$$ On the other hand, let $X_t^h(x) \equiv \langle X_t(\cdot), p(h, x, \cdot) \rangle$, we have that $$egin{aligned} &\int_{R^d} E_m(X^h_t(x))^2 g_p(x) dx \ &= \int_{R^d} \exp\{2bt\} g_p(x) dx + c \int_{R^d} g_p(x) \int_0^t \exp\{2bs\} \langle m, (T_s ph)^2 angle ds dx \ &= \exp\{2bt\} \int_{R^d} rac{1}{(1+x^2)^{p/2}} dx + c \int_0^t \exp\{2bs\} p_{2s+2h}(o) ds \int_{R^d} g_p(x) ds \ &\leq \exp\{2bt\} (1+c \int_{2h}^{2t+2h} p_s(o) ds) \int_{R^d} rac{1}{(1+x^2)^{p/2}} dx < +\infty \; (p>d), \end{aligned}$$ and $$egin{aligned} &\int_{R^d} E_{in}(X_t^{h_1}(x)-X_t^{h_2}(x))^2 g_p(x) dx \ &=\int_{R^d} c \int_0^t \exp\{2bs\} \int_{R^d} [p_{s+h_1}(x,y)-p_{s+h_2}(x,y)]^2 dy ds g_p(x) dx \ &=c\int_{R^d} \int_0^t \exp\{2bs\} [p_{2s+2h_1}(0)-2p_{2s+h_1+h_2}(0)+p_{2s+2h_2}(0)] ds g_p(x) dx \ &\leq \int_{R^d} g_p(x) dx \exp\{2bs\} [(\int_{2h_1}^{h_1+h_2}-\int_{h_1+h_2}^{2h_2}+\int_{2t+h_1+h_2}^{2t+2h_2}-\int_{2t+2h_2}^{2t+h_1+h_2}) p(s,0) ds] \ &\quad (h_2>h_1>0) \ &\rightarrow 0(h_1,h_2\downarrow 0). \end{aligned}$$ (by the integrablity of p(s,0) on [0,T]). Therefore there is an $X_t(x)$ such that $$\int_{R^d} E_m(X_t^h(x)-X_t(x))^2 g_p(x) dx \to 0, \text{ when } h \to 0.$$ But for any $\phi \in C_C^\infty(R^d), (X_t^h, \phi) = \int_{R^d} X_t^h(x) \phi(x) dx \to \langle X_t, \phi \rangle (h \to 0)$, so we have $$egin{aligned} E_m |\langle X_t, \phi angle - \int_{R^d} X_t(x) \phi(x) dx|^2 &= E_m (\lim_{h\downarrow 0} |\langle X_t^h, \phi angle - \int_{R^d} X_t(x) \phi(x) dx|) \ &\leq \lim_{h\downarrow 0} \int_{R^d} E_m |X_t^h(x) - X_t(x)|^2 g_p(x) dx \int_{R^d} g_p^{-1}(x) (\phi(x))^2 dx ightarrow 0 (h\downarrow 0), \end{aligned}$$ **—** 512 **—** namely $\langle X_t, \phi \rangle = \int_{\mathbb{R}^d} X_t(x) \phi(x) dx$ a.s., P_m . Remark 2.1 When d=1, Super-Brownian motion and Super α - symmetric stable process $(1 < \alpha < 2)$ satisfy the conditions of Lemma 2.1. Particularly, let c=0 in lemma 2.2 we know that V_t in (1.1) is linear, hence $$\begin{split} E_m | \exp\{-\langle X_t(\cdot), f(\cdot + y)\rangle\} - \exp\{-\langle X_t(\cdot), f(\cdot)\rangle\}|^2 \\ &= E_m \exp\{-\langle X_t(\cdot), 2f(\cdot + y)\rangle\} - 2E_m \exp\{-\langle X_t(\cdot), f(\cdot + y) + f(\cdot)\rangle\} \\ &+ E_m \exp\{-\langle X_t(\cdot), 2f(\cdot)\rangle\} \\ &= \exp\{-\langle m, V_t(2f(\cdot + y))\rangle\} - 2\exp\{-\langle m, V_t(f((\cdot + y) + f(\cdot))\rangle\} \\ &+ \exp\{-\langle m, V_t(2f(\cdot))\rangle\} \\ &= 2\exp\{-\langle m, V_t(2f(\cdot))\rangle\} - 2\exp\{-\langle m, 2V_t f\rangle\} = 0, \end{split}$$ in enely $$\langle X_t(\cdot), f(\cdot + y) \rangle = \langle X_t(\cdot), f(\cdot + y) \rangle = \langle X_t(\cdot), f(\cdot) \rangle, \text{ a.s., } P_m.$$ (2.6) It seems that the exceptional set in (2.6) depends on f and y, but as a matter of fact, it does not. This could be explained as follows. Suppose $S = \{y_n, n > 0\}$ be the set of all rational points in \mathbb{R}^d . For fixed $f \in C_c^{\infty}(\mathbb{R}^d)$, we have $$\langle X_t(\cdot), f(\cdot + y) \rangle = \langle X_t(\cdot), f(\cdot) \rangle \forall y \in S \text{ on } N_1, P_m(N_1) = 1$$ and if $y_0 \notin S$, $$\langle X_t(\cdot), f(\cdot + y_1) \rangle = \lim_{y_n \to y_0} \langle X_t(\cdot), f(\cdot + y_n) \rangle = \langle X_t(\cdot), f(\cdot) \rangle$$ by the continuity of f. Moreover, from the separablity of the space $C_c^{\infty}(\mathbb{R}^d)$ we can deduce by the same way as above that, on $N_2, \langle X_t, f(\cdot + y) \rangle = \langle X_t, f(\cdot) \rangle$, for any $f \in C_c^{\infty}(\mathbb{R}^d)$, where $P_m(N_2) = 1$. Therefore for any $y \in \mathbb{R}^d$ and any $f \in C_c^{\infty}$, on $N_1 \cap N_2$, we get $$\langle X_t, f(\cdot + y) \rangle = \langle X_t, f(\cdot) \rangle$$ in addition, $\langle X_t, f \rangle = \int_{\mathbb{R}^d} X_t(x) f(x) dx$, so we have, on $N = N_1 \cap N_2$, for any y and f $$\int_{R^d} X_t(x) f(x) dx = \int_{R^d} X_t(x) f(x+y) dx = \int_{R^d} X_t(x-y) f(x) dx,$$ i.e., $\int_{R^d} [X_t(x) - X_t(x-y)] f(x) dx = 0.$ From the arbitrarity of $y \in \mathbb{R}^d$ and $f \in C_G^{\infty}$, it follows that $$X_t(x_1) = X_t(x_2)$$, a.e., $x_1, x_2 \in \mathbb{R}^d$. Hence there is a random variable c_t taking values in R such that $$X_t(dx)=c_t m(dx) \text{ for } t>0.$$ Thus we obtain **—** 513 **—** Proposition 2.1 Let X_t be a Measure-valued branching Lévy process with branching function $\Psi(z) = bz$, and assume that the conditions in theorem 2.1 and Lemma 2.2 hold. Then $$P_m(X_t = c_t m) = 1, \text{ for fixed } t > 0, \tag{2.7}$$ where c_t is a ramdom variable taking values in R^+ . The Measure-valued branching process satisfying the last identity is called a relatively invariant process. # 3. The uniqueness theorems of the initial measures for the relatively invariant processes Motivated by the uniqueness problem of invariant measure for Markov process on \mathbb{R}^d , we shall consider the similar problem for a relatively invariant measure-valued branching process in this section. Now we give our main results. Theorem 3.1 Let X_t be a Measure-valued branching Brownian motion with branching function $\Psi(z) = bz - c/2z^2$. If the process is relatively invariant with the initial measure μ . Then $\mu = \alpha m$, (α is a positive constant, m is the Lebesgue measure on \mathbb{R}^d). Furthermore, we can extend this conclusion to a class of Measure-valued branching diffiusion processes. That is #### Theorem 3.2 Suppose that 1. ξ_t is an L-diffusion process with transition density p(t,x,y) satisfying $$\frac{1}{\nu_3(2\pi t)^{d/2}}e^{-\frac{\nu_4|x-y|^2}{2t}} \leq p(t,x,y) \leq \frac{1}{\nu_1(2\pi t)^{d/2}}e^{-\frac{\nu_2|x-y|^2}{2t}} \ \ (\nu_1,\nu_2,\nu_3,\nu_4>0).$$ - 2. X_t is a Measure-valued branching process on $M_p(\mathbb{R}^d)$ over ξ_t with the branching function $\Psi(z) = bz \frac{1}{2}cz^2$. - 3. $P_{\mu}(X_t = c_t \mu) = 1, \forall t > 0, \mu \in M_p(\mathbb{R}^d)$, for fixed t, c_t is a random variable taking values in R. Then $\mu = \alpha m(\alpha \text{ is a constant}, m \text{ is the Lebesgue measure on } \mathbb{R}^d)$. Remark 3.1 To prove the theorem, we need an analytic fact: Let $\alpha(t)$, (t > 0 be a continuous function, and $$\alpha(t_1+t_2)=\alpha(t_1)\alpha(t_2),\alpha(t)>0.$$ Then there exists a positive c, such that $\alpha(t) = e^{-ct}$. **Proof of theorem 3.2** According to Fitzsimmon^[1], we know that - 1. X_t is a continuous process in the topology of vague convergence. - 2. $E_{\mu}\langle X_t, f \rangle = \langle \mu, e^{-bt}T_t f \rangle, \forall f \in C_c^{\infty}(\mathbb{R}^d).$ Hence, by the assumption 3 of theorem 3.2, we have $$\langle \mu, e^{-bt} T_t f \rangle = E_{\mu} \langle c_t \mu, f \rangle = E_{\mu} (c_t) \langle \mu, f \rangle.$$ -- 514 --- Let $\alpha(t) = e^{bt} E_{\mu}(c_t)$, and suppose that $u \not\equiv 0$, then we can take a positive function $f \in C_C^{\infty}$ such that $\langle \mu, f \rangle > 0$. Since $T_t f(x)$ is continuous in t, we can take two positive number t_0 and δ satisfying $t_0 - \delta > 0$, by assumption 1 of the theorem, we are easy to find that for N > 0 large enough and $t \in (t_0 - \delta, t_0 + \delta)$ $$T_t f(x) \le ||f|| \int_{\text{supp} f} p(t, x, y) dy \le m(\text{supp}(f)) ||f|| c \frac{1}{(1 + |x|^2)^{p/2}} (|x| \ge N)$$ $T_t f(x) \le ||f||, (x \le N).$ Since $\langle \mu, \frac{1}{(1+|x|^2)^{\mu/2}} \rangle < \infty$, then it follows from the dominated convergence theorem that $\langle \mu, T_t f(x) \rangle$ is continuous in $(t_0 - \delta, t_0 + \delta)$, and so in $(0, \infty)$, which also implies that $\alpha(t)$ is continuous on $(0, \infty)$. Besides, $\mu T_t = \alpha(t)\mu$ (clear $\alpha(t) > 0$) and $$\alpha(t_1+t_2)=\mu T_{t_1+t_2}=(\mu T_{t_1})T_{t_2}=\alpha(t_1)\mu T_{t_2}=\alpha(t_1)\alpha(t_2),$$ so we conclude that $\alpha(t) = e^{-ct}$ by lemma 2.2. In what follows, we intend to prove c = 0. If $c \notin 0$, we consider the following two cases. 1. Assume c>0, we choose a bounded $A\in B(R)$ with $\mu(A)>0$, then $$egin{array}{lll} \mu(A) &=& e^{nct} \mu T_{nt}(A) \geq e^{nct} \int_{R^d} \mu(dx) \int_A p(nt,x,y) dy \ &\geq & e^{nct} \int_{R^d} \mu(dx) \int_A rac{1}{ u_3 (2\pi nt)^{d/2}} e^{- rac{ u_4 |x-y|^2}{2\pi t}} dy \ &\geq & e^{nct} m(A) \inf_{y \in A} rac{1}{ u_3 (2\pi nt)^{d/2}} e^{- rac{ u_4 |y|^2}{2\pi t}} \int_{R^d} e^{- rac{ u_4 |x|^2}{2\pi t}} \mu(dx) \ &\geq & m(A) \inf_{y \in A} e^{- rac{ u_4 |y|^2}{2\pi t}} rac{e^{ rac{1}{2}nct}}{ u_3 (2\pi nt)^{d/2}} \int_A e^{- rac{ u_4 |x|^2}{2\pi t}} + rac{1}{2}nct} \mu(dx) \ &\to & \infty (n\uparrow +\infty) \end{array}$$ 2. Assume c < 0, we let $\mu(A) > 0$, then $$\begin{array}{ll} \mu(A) & = & \frac{\mu T_{nt}(A)}{e^{n|c|t}} \\ & \leq & \frac{1}{e^{n|c|t}} \int_{R^d} \mu(dx) \int_A \frac{e^{-\nu_2 \frac{|x-y|^2}{2nt}}}{\nu_1 (2\pi nt)^{d/2}} dy \\ & \leq & m(A) \sup_{y \in A} e^{\nu_2 \frac{|y|^2}{2nt}} \frac{e^{-n|c|t}}{\nu_1 (2\pi nt)^{d/2}} \int_{R^d} e^{-\nu_2 \frac{|x|^2}{2nt}} \mu(dx) \\ & \leq & m(A) \sup_{y \in A} e^{\nu_2 \frac{|y|^2}{2nt}} \frac{e^{-n|c|t}}{\nu_1 (2\pi nt)^{d/2}} \int_{R^d} \frac{\mu(dx)}{1 + \nu_2 \frac{|x|^2}{2nt} + \dots + \frac{1}{[p]!} (\nu \frac{|x|^2}{2nt})^{[p]}} \\ & \to & 0(n \uparrow + \infty) \end{array}$$ which contradicts with $\mu(A) > 0$. Therefore c = 0, which implies that μ is an invariant measure to T_t , and by the conclusion of [6] we have $\mu(dx) = \alpha m(dx)$ for α being a positive constant. Thus, the proof of theorem 3.2 has been completed. Acknowledgement The author is gratefull to Prof. Wang Zi-kun and Prof. Wu Rong for their encouragement. He also thanks all members at stockastic process seminar in Nankai University for their helpful suggestions. ## References - [1] N.El Karoui and S.Roelley-Coppoletta, Study of a General class of measure-valued branching processes, a Lévy-Hincin representation, Stoch. Proc. Appl., 1991. - [2] P.J.Fitzsimmon, Construction and regularity of measure-valued Markov branching processes , Isr. J. Math., 64(1988), 337-361. - [3] I.Iscoe. A weighted occupation time for a class of Measure-valued branching process, Probab. Th. Rel. Field, 71(1986), 85-116. - [4] A.Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin Heilberg New York, 1983. - [5] N.Konnô and T.Shiga, Stochastic partial differential equation for some Measure-valued diffusions, Th. Rel. Fields, 79(1988), 201-225. - [6] Xiong Jie, The σ -finite invariant measure for the diffusion processes, Acta. Sci. Nat. Univ. Pek. Vol.24, No.3, 1988. # 一类测度值分支过程的不变特性 王永进 (天津南开大学数学系, 300071) ### 樀 空间齐次性是 R^d 上 Lévy 过程的一个重要特性,本文考虑超 Lévy 过程的类似性质,即 是分布意义下的平移不变性,并且对一类特殊的测度值分支过程当其初始测度是 Lebesgue 测度时,得到了更强的结果.