Therefore ¢ = 0, which implies that g is an invariant measure to 7;, and by the
conclusion of [6] we have pu(dz) = am(dz) for a being a positive constant.
Thus, the proof of theorem 3.2 has been completed.
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The Invariant Characters of One Class of Measure-valued
Branching Processes *
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Abstract The spatial homogeneity is an important character for Lévy-processes on Eu-
clidean space R®. The analogy for the Mcasure-valued branchinng processes over Lévy
processes (also called Super-Lévy processes) will be discussed in this paper. That is the
translation-invariant in the seuse of distributions. Moreover some stronger results are
also derived for the special Measurce-valued branching processes when their initial mea-
sures arc given by the Lebesgue measure.

Keywords measure-valued branching processes, translation- invariant, invartaut mea-
sure, relatively invariant processes.

Classification AMS(1991) 60J25,60G80/CCL 0211.62

1 Introduction

The measure-valued branching process (MBP) arises as the high density limit of a
certain branching particle system. The general MBP have been constructed by El Karoui
and Roelly- Coppolettau], Fitzsimmons!?! and so on. In this paper we follow the definition
of El Karoui and Roelley-Coppoletta.

Firstly, we introduce some notations:

Let C;, denote all continuous functions on R?, and C° be the space of functions on R¢
having infinite-order derivatives and vanishing at infinity, C2°(R?) denote all continuous
function having compact support and infinite-order derivations. M(R?) denotes the space
ofta.ll Radon measures on R?. We call g,(z) = W(p > d) a reference function and
se

M,(RY) = {u € M(R?): (1 + 2?)"P/?u(dz) is a finite measure},

Cl'(Rd) ={f¢ C(Rd) 1/ gplhmax < oo},

for f € CZ(R?), we also define (u, f) = [pa f(2)p(dz).
For notations not defined here refer to [1].
We now turn to Meauser-valued branching processes.

*Received Nov.20, 1993.
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Let A be the strong generator of a Feller semigroup T, on C(R?) with domain D(A).
Let ¥(z,-) be a branching function defined by

¥(z,z) = a(z) + b(2)z — c(z)/22% - /( )(e—z’\ — 1+ z2Mgeacny)v(z, dA)
0,00 -

with the coefficients satisfying the following conditions:

a(z),b(z),c(z) belong to C,(R?), and a(z),b(z) are non-negative. The measure v
satisfies f(o,oo)(’\z A 1)v(z,dX) < oo and is sufficiently regular on z to get z — R(z, z)
being a continuous function uniformly on z.

Based on A and ¥, a Measure-valued branching process X; on M,(R?) has been
constructed by El Karoui and Roelley-Coppoletta[ll, and the Laplace functional of X; can
be expressed as follows

E, exp{—(Xt, f)} = exp{— (1, Vi f)}, (1.1)

where V; f satisfies the equation or
t
Vef = [ T B(ViS(@))ds = Tof, € G (1),

R N R

The purpose of this paper is to find some invariant characters for the Measure-valued
branching processes when their originial processes are spatially homogeuous processes on
RY. After introducing the MBP and giving some notations in the first section, we shall
discuss, in section 2, the invariant character in the sense of distributions for the Measure-
valued branching Lévy processes (Super-Lévy processes). and at the end of section 2, we
also derive a stronger result for special MBP. In section 3 we shall show a uniqueness
theorem for the relatively invariant Measure-valued branching Brownian motion (defined
in section 3) and-extend it to Measure- valued branching diffusion processes.

In what follows, we assume that the branching functions ¥(z) = bz — ¢/22%, (b and ¢
are two constant numbers, ¢ > 0).

2. The translation-invariant character for Measure-valued branching
Lévy processes

Theorem 2.1 Let X; be a measure-valued branching Lévy process with branching func-
tion ¥(z) = bz — ¢/22%, and the initial measure be the Lebesgue measure on R*. Then X,
1s translation-invariant in the sense of distribution w.r.t P,,, le.,

X(A) L X,(A+y), VAc B(RY),Vy ¢ R

Proof (1.1) implies that

3]
Q%]
~—

Vif(z) - /Ut '/de(t ~ 5,2,2)8(V,f(2))dzds = T,f(z). (2.
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As we know that there is a unique positive solution to (1.1), also to (2.2)1%.
If replacing z by z + y in (2.2), we have

Ve +9) - [ [ ple= szt u )0V (f)deds = (TN +0). (29)

On the other hand, if using f(z + y) instead of f(z) in (2.2), then we obtain

Vif(-+ ) / [ plt = 8,2, )RV f(z + 9))dzds = Tef(-+ ). (2.4)

Noting that p(t,z + y,z) = p(t,z,z — y), hence we have

@)z +9) = [ otz +9,2)0(z)dz = /m p(t,2,z — ) f(2)dz = Tf(- + y)

and

/ p(t— s,z +y,2)¥(V,f(z))dz = / p(t — 5,2, 2)¥((V, f)(z + y))dz.
R JRd ‘

Thus is follows from (2.3) that

(Vef)(=+y) / /I" —s5,2,2)8((V,f)(z+y))dzds = T. f(z + y). (2.5)
0
By contrasting (2.5) with (2.4), and using the uniqueness of the solution of (2.2) we have

(Vif)(z +y) = Vi(f(- + 9))(2)

for any y € R4, t > 0.
Recall the equation (1.1), we also have

Enmexp{—(Xe("), f(- +9))} = exp{~(m(),(Vif(- +9))} = exp{—(m(), (Vi f)(- + v))}
= exp{—(m(:),Vif(:))} = Ewexp{—(X:(), F(:))}

which implies
E,.exp{~(X:(- +¥), F(|))} = En.exp{—(X.(}), fF(:))}.
Hence Xi(- +y) £ X,(-), P, ¥y € R and by the arbitrarity of f, this also implies
X,(A) L X,(A+y),P., VACR.Vye R

Thus we complete the proof of the theorem. O
Based on theorem 2.1, we try to develop the results in spacial cases. To do so, we need
the following lemma whose proof was essentially due to Konné and Shigal®.

Lemma 2.1 Let X; be a Super-symmetric Lévy process with branching functions ¥(z) =
bz — £z%, and suppose that .I;)Tp(s,O)ds < o0, VT > 0,P(Xy = m) = 1. Then X, is
absolutely continuous with respect to the Lebesgue measure m.

— 511 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Proof Applying Fitzsimmon'’s results [3] of second-order moments of superprocesses, we
have

BuXe £ = (), Blexpd | H(E)ds1(&)))
# [P, O Blexp [ b€V} A€

If b(2) = b,¢(2) = ¢, 0 = m, then
En(Xe, f)? = exp{2bt}(m,T.f)* + c/Ot(mTz-a,exp{?bs}(T.,f)z)ds
— exp{2bt}(m, f)? + ¢ /0 * exp{2bs}(m, (T, f)?)ds.
On the other hand, let X/'(z) = (X;(-),p(h,z, ")), we have that
[ BulXt(2)0,(2)dz
_ /R exp{2bt}g, (z)dz + ¢ /P o= /O ’ exp{2bs}(m, (T,ph)?)dsdz

t
= exp{2bt}/ ! —dz + c/ exp{2bs}passan(0)ds | g,(z)ds
RY ( )l /2 0 .

14 22 R

420

< exp{2bt}(1 + c/

2h

1
P()s) [ et <+ (0> )
and

/m En(XM (2) = X2 (2))2g,(2)dz

t
2/'0/ eXP{QbS}/ Pstni (2,9) = Potio(2,y)) dydsg,(2z)dz
Rt Jo R

t
= C»/;I" /(; exp{?bs}[p2,+31“ (O) - 2P23+/H+h:(0) + P2s+2hs (O)]dsg,,(:c)d:c

hy +ha 20 2t+2ha 2t+hy +ho
< [ a@dzepiest( [ - [ e [0 ] (s, 0)ds]
Rt 2l Ry +ho 2+hy+ho 2t+42ha

(hg > h1 > 0)
— O(Ill,hg l 0)

(by the integrablity of p(s,0) on {0,T]).
Therefore there is an X,(z) such that

/ 'E,,,,(th"(:c) — Xi(2))?g,(z)dz — 0, when h — 0.
JR:
But for any ¢ € CF(RY), (X}, ¢) = [pa X (2)d(z)dz — (X¢, ¢)(h — 0), so we have
Eal(Xe,#) - [ Xu(2)o(@)dal’ = Enllim|(X0,0) - [ Xi(2)d(2)dal)
R hlo R

[

< Lim /R Bl X (2) - Xe(2)Pgp(z)de /R L9y (2)(8(=))*dz — O(h | 0),
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namely (X, ¢) = [ Xi(2)d(2)dz ass., P,.

Remark 2.1 When d = 1, Super-Brownian motion and Super a- symmetric stable process
(1 < a < 2) satisfy the conditions of Lemma 2.1.
Particularly, let ¢ = 0 in lemma 2.2 we know that V; in (1.1) is linear, hence

Ep|exp{—(Xe(-), (- + ¥))} — exp{—~(X:(-), F(-))}I?

= By exp{—(X¢(-),2f(- + y))} — 2B, exp{—(Xe(), f( + ) + F())}
+ B, exp{—{(X:(-),2f(-))}

= exp{—(m,Vi(2f(- + ¥)))} — 2exp{~{m, V.(S((- +y) + F(IN}
+exp{—(m, Vi(2f(-)))}

= 2exp{—(m, V;(2f))} — 2exp{~(m, 2V, f)} = 0,

v enely

(Xe() FC+y)) = (Xe(), f(- +9)) = (Xe(4), (), as., P (2.6)

It seems that the exceptional set in (2.6) depends on f and y, but as a matter of fact, it
does not. This could be explained as follows.

Suppose S = {y,.,n > 0} be the set of all rational points in R*. For fixed f € C>®(R"),
we have

(Xe(+), FC- 4+ 9)) = (Xu(+), f(-))Vy € S on Ny, Pu(N1) =1
and if yo ¢ 5,

(Xe(-), f(+m)) = lim (Xo(), (- + w.)) = (Xe(0), F())

Yn—

by the continuity of f.
Moreover, from the separablity of the space C.*(R?) we can deduce by the same way
as above that, on Ny, (X;, f(- +y)) = (X4, f(*)), for any f € C(R?), where P,,(N,) = 1.
Therefore for any y € R? and any f € C, on Ny N N», we get

(Xe, (- +9)) = (X, £())
in addition, (Xy, f) = [p« Xi(2)f(2z)dz, so we have, on N = Ny N Ny, for any y and f

fu X @ = [ Xtz = [ Xl s,

J R

i.e., [pelXe(z) — Xo(z — y)]f(2)dz = 0.
From the arbitrarity of y € R% and f € Cg, it follows that

Xi(z1) = Xi(z2), ae., 21,22 € R!.
Hence there is a random variable ¢, taking values in R such that
Xi(dz) = cpm(dz) for t > 0.

Thus we obtain
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Proposition 2.1 Let X, be a Measure-valued branching Lévy process with branching

function ¥(z) = bz, and assume that the conditions in theorem 2.1 and Lemma 2.2 hold.
Then
P,.(X: = ¢gm) = 1, for fixed t > 0, (2.7)

where c; is a ramdom variable taking values in R*.
The Measure-valued branching process satisfying the last identity is called a relatively
invariant process.

3. The uniqueness theorems of the initial measures for the relatively
invariant processes

Motivated by the uniqueness problem of invariant measure for Markov process on R,
we shall consider the similar problem for a relatively invariant measure-valued branching
process in this section. Now we give our main results.

Theorem 3.1 Let X; be a Measure-valued branching Brownian motion with branching
function ®¥(z) = bz — ¢/22>. If the process is relatively invariant with the initial measure
jt. Then pp = am,(a is a positive constant, m is the Lebesgue measure on R‘l).

Furthermore, we can extend this conclusion to a class of Measure-valued branching
diffiusion processes. That is

Theoremn 3.2 Suppose that
1. & is an L-diffusion process with transition density p(t,z,y) satisfying
1 _gleegl? < plt ) < 1 _vale—yl? ( > 0)
———e T = 2, Y) S ————-e" T = Vy,Va2, V3,V .
V3(27rt)’i/2 =P y I/1(27l't)d/2 ! o4
2. X, is a Measure-valued branching process on M,(R?) over ¢ with the branching

function ¥(z) = bz — 1cz%.

3. PuX¢ = cap) =1Vt > 0,u € M,(RY), for fixed t,c, is a random variable taking
values in R.

Then po = aom(« is a constant, m is the Lebesgue measure on Rd).

Remark 3.1 To prove the theorem, we need an analytic fact: Let a(t),(t > 0 be a
continuous function, and

a(t1 + t'_)) = a(tl)a(tg),a(t) > 0.

Then there exists a positive ¢, such that a(t) = e~

Proof of theorem 3.2 According to Fitzsimmon!!l, we know that
1. X, is a continuous process in the topology of vague convergence.

2. E(X¢, f) = (u, e T f),Vf € CX(RY).

Hence, by the assumption 3 of theorem 3.2, we have

(IJ‘y e—-thtf) = Eu<ct/l‘a f> = Ell(ci)</l'a .f>
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Let a(t) = e"E,(c;), and suppose that u # 0, then we can take a positive function f € C¥
such that (g, f) > 0.

Since Tif(z) is continuous in ¢, we can take two positive number tg and § satisfying
t, — 8 > 0, by assumption 1 of the theorem, we are easy to find that for N > 0 large
enough and t € (to — §,¢0 + §)

T, f(z)
T, f(z)

Since (g,

IN

1
1, 629y < mGsuop (e ags (212 M)
i o )

IA

W) < oo, then it follows from the dominated convergence theorem that
T f(z)) is continuous in (¢y — §,ty + &), and so in (0, 00), which also implies that a(t
i

is continuous on (0, c0). Besides, uT; = a(t)u (clear a(t) > 0) and

a(ty + t2) = uTyy 1o, = (013, )T, = a(th)nTy, = a(ty)a(ts),

so we conclude that a(t) = e“* by lemma 2.2.
In what follows, we intend to prove ¢ = 0.
If ¢ ¢ 0, we consider the following two cases.
1. Assume ¢ > 0, we choose a bounded A € B(R) with p(A) > 0, then

p(A) = e"'uT, (4) > e -/R" /L(d:n)/A p(nt,z,y)dy
> et p(dz) / ——L——e“u#dy
JRd A 1/3(271'nt)”/2
> 7n(A)iufe“"Jﬂ_——liiii——-/.6_5%#i+%“dﬂ(dm)
yEA 1/3(27&'nt)"/2 Ja

— oo{n T +00)

2. Assume c < 0, we let pu(A) > 0, then

1T (A
/L(A) = 1l.|1:(|t )
e
1 L=l
(&4 < at
< — [ wd= / Ly
T el ./;z-l g l). A vi(2nnt)i/? Y
2 —nfe|t 2
|u 1o®
< A VT _/ ot ul(d
< m( )igge i @ent) 7 i © p(dz)
ul? C—'n.lc|f. /l(dI)
< m{A)supe” 2t / . S
( )]/EB Vl(zﬂ,nt)rl/'l Jriq 4 VZJv%!% 4+ [IIT]'(VJ'%)[[’]
— 0(n 1 +o0)
which contradicts with p(A) > 0.
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Therefore ¢ = 0, which implies that g is an invariant measure to 7;, and by the
conclusion of [6] we have pu(dz) = am(dz) for a being a positive constant.
Thus, the proof of theorem 3.2 has been completed.
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