tends to the standardized normal distribution, therefore

— N,6 N
—u, — 51 171 + ! (6, —61) > 0 wp 1,

VN16:(1 - 6y) 0:(1 - 86,)

which shows that the theorem holds. C
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Approximation Bayes Method in System Tree *

Zheng Zhongguo Dai Ming Shi Jian
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Abstract In this paper, an approximate Bayes method is employed to estimate the
reliability of a systewn tree. It is proved that the estimators set by approximate Bayes
method is efficient in Fisher's sense. Morcover. the lower confidence limit of the relia-
bility of a systein tree set by approximmate Bayes method, which is efficient in Fisher's
scuse, is investigated.

Keywords system tree, Bayes method. prior distribution, posterior distribution, cou-
jugate distribution, asymptotical efliciency.

Classification AMS(1991) 62F15/CCL 0213.2

1 Introduction and Main Results

In practive, a system of a machine is usually divided into several subsystems, and
these subsystems again can be divided into several subsystem. ---. Finally, a system tree
is formed. An example of a system tree is explained in Figure 1.1.

[A1]  [Anz| 4]

Figure 1.1

In Figure 1.1, system A; is divide into subsystems A;; and A;, where subsystem Aj; is
again divided into A;1; and Ai1» and A;» has only one system A;2; as its subsystem. In
this ‘paper, we denote the system tree by A = {A,,,m € M}, where M is a finite set of
indices, satisfying

(1) m=(1)eM;
(2) if (41, --,4) € M, then i, = 1,

*Reccived Jun.14, 1993.Supported parially by the NSFC and the Doctoral Program Fundation.
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(3) if (i1, --,ix) € M, then (41, - ,ix_1) € M, and (i1, -, ix_1,i) € M,

i=1,,ik1,
where 7, - -, 4, are positive integers. A,; is said to be the son of A,,,,if m = (4;,---, )
and ™ = (i1, - ,%k,2k41)-A,, 1s said to be the last generation subsystem of the system
tree A if it has no som in A. In Figure 1.1, A;; and A, are the sons of A;; 4117, 4112 and
Ajs are the last generation subsystems of the system tree.
Denote

M(m)={m:A;is the son of At
M, = {m: A,, is the last generation subsystem of A}.

Let 6,, be the reliability of A,,, i.e., the probability that A,, will work perfectly. For the
relations between 8,,’s, we have

Condition 1.1 Suppose that m ¢ M, and M(m) = {m,,---,my}, then
01u = gvu(eﬁ“ y T )01;”)7

where the function 6,,(8..,,---,8:,) is a known function with Z,;‘EM(,“)(%Z{“)z # 0 and
bounded second partial derivatives.
If the system structure is the series structure, then the function 6,, has the form of

1
01u - H 01;“-
i=1

It is easy to know that among the parmeters 8,,,m € M, the independent parameters
are {6,,,m € M,}. Suppose that for every subsytem A,,, we have pass-failure data
{nm, s} where n,, is the number of trials and s,, is the number of successed. Assume
that {s,,,m € M} are independent to each other.

Condition 1.2 For every m,m' € M, there exists § satisfying 0 < § < % such that the
following holds as N = min(n,,,m € M) — o

1+46
m

lim = 4.

N-ox n,,

The main purpose of our task is to assess the reliability ; of the system A; (the
machine itself) from the whole data set {(n,,,s,,),m € M}. In [3], an iterative method
which we called the virtual system method is presented and the efficiency of the estimate
and the lower-bound of #, is proved. In this paper, we will deal with the approximate
Baysian method, which was introduced by N.R.Mann at {5] (also see [6]).

Let [1,,.ea, Pm(tn) be the prior density of (6,,,,m € M,). We calculate the approximate
posterior distribution iteratively through the following steps.

(1) For every m € M,, the approximate posterior distribution p,, is the beta distri-
bution with parameters §,, and N,, — S, + 1.

IB(Smy Nm - Sm. + 1),



where

Now = ton + fiomy Som = S + 12, SENTEY
m,t::zzz,':;::;z:;—l, s
my(m) = /“1 tp.m (t)dt, (1.4)
ma(m) = /“" £2pon()dt. (1.5)

(2) For m ¢ M,, the approximate posterior distribuction is
ﬁ(‘s"lv Nm - S1u + 1)1

where N, and §,, are given by (1.2)-(1.3), but m,;(m) and m,(m) are given by

m) = /.../e,,,(t,;,,,me M(m)) T]  Balti)dt, (1.6)
meM(m)

m-;(7n / /B,H(t,,l,m S Iﬂ(m) H prn 1n d L. (17)
meEMmn)

In the above, p,,(-) is the density function of the approximate posterior distribuction

,B(Sﬁn Nﬁz - Syh + 1)

Definition 1.1 Let §, be the solution of the following equation

Jy" 65711 - 9y~ Sdg

o5 oy s (1.8)
and 5
él = Nl _1+. 1 (19)

In Deﬁnition 1.1, 8, stands for the lower conﬁdence limit of #, with the designed level
1 - a, and 6, for the point estimator of ;.
The information matrix I of the data ((n,.,s,.),m € M) is given by

08 n, 0o
I — Z m ™ m’
5, 09 6,,(1-6,,) 06

(1.10)

where 8 = (6,,,m € M,)" is the column vector with components 8,,,m € M. It is easy to
know that I is a matrix valued function of the parameters {f,,,m € My}. In.this paper,
we will investigate the efficiency of 6, and 8,. The following two theorems show that they
are efficient in the Fisher’s sense.
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Theorem 1.1 Let {0,,,mm € M} be the set of the parameters of the system tree, and
(Pm,$m),(m € M) be the data set of the whole tree. Let 6, be the point estimator of
6, defined by (1.9). Under the Conditions 1.1 and 1.2 as min{n,,,m € M} — oo, the

follwing holds
06, 90 ;106 06,

371 5g )2 (6, — 6,) -2 N(0, 1). (1.11)

Theorem 1.2 Under the conditions of Theorem 2.1, the following holds:

00y 00, _1
(5o 1 5g) 2 (@~ 02) = M(ua, 1). (112)

where 0, is the approximate Baysian lower confidence limit of 6, defined by (1.8), and u,
is the a quantile of the standardized normal distribution function.

2 Proofs

Lemma 2.1 Let the true parameters of the system tree be {6,,,m € M}. Suppose that
Sm and N,, are defined by (1.1)-(1.7). Then as N = min{n,, : n;,m € M(m)} — oo,
the following holds,

S 1
IN," +1 - oml (—ﬁ)’ (2'1)
[ = 6 5m(0)de = 0,(505). (2.2)

Proof We prove this lemma by induction. When m € My, since the quantities #,, and
8 are constants, (2.1) and (2.2) can be obtained by direct calculation. Now suppose that
m € M\My and for every 7n € M(m). (2.1) and (2.2) hlod. Then from (1.2), (1.3), we
have

m Ny S gy + 1 S .
— Umt = - om p - Om
|Nm+1 ‘ IN"I.+1(n1n )+Nf"+1(n1"r+1 )l

Sm S

S I_" m}+l —0171.l
Ny Ny,
Sm

= |—‘_ 0m; + |m1( ) - 01u|a (23)

where m,(m) is given by (1 6)
From (1.6) and Taylor expansion, we have

mi(m) =+ Y / / 0¥ I B (tw)dtm,,  (24)

meM(m) m) EM(m)

where 1, is the value of 0—”—"* taking at (6,5,m € M(m))+&m, (Lt — 0. € M(m)),€n, €
[0,1]. Since = is bounded we have

ma(m) ~6u) < ¢ [ Ue-ba)lpa(0)ds

meM(m)
— 4 —
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where c is a constant.
By induction, (2.2) implies that

1 1
t — 0;:)p5(0)dt = O,(—= 2.5
J 1= ba)pa(ta = 0() (25)
holds for all m € M(m). Therefore
1
ma(m) = 0] = O 7). 29)
By the Central Limit Theorem (CLT) we obtain
s : 1
rn_omzo)_____ 2.7
e 7 (2.1

(2.1) follows from (2.3), (2.6) and (2.7). Since P, is the density of beta distribution
B(Sm, N — Sm), the following holds:

1
/ (£ = 6, )25 (t)dt
0

_ Sm(Sm + 1)(Sm + 2)(5"1 + 3) _ 0 Sm(Sm + 1)(5111 + 2)
(N + 1)(Now + 2)(Npu + 3) (N +4) " (N + 1)(Nw + 2)(Non + 3)
Sn(Sm + 1) S,
66> : — 43 "™ 4 68
+ nt(Nm+1)(N"l+2) '"(N1n+1) + m
. ( Sn’ _0 )4 + GSm(Nm +1- Sm)(_ sznS?n
" ‘N,+1 ™ (N + 1)2(Np + 2)° (Npw + D)2(Ny, + 3)2(Ny + 4)
SN, . 1
+((Nm +1)(Nm + 3) - 0"‘) ) + OP(F)a

which shows that (2.2) follows from (2.1). O

Lemma 2.2 Suppose that m ¢ My. As N = min{n;;,/ € M(m)} — oo, we have
my(m) — ma(m) = (1 — 6m) + 0p(1), (2.8)

where m;(m), mz(m) are given by (1.6), (1.7).

Proof Let t = (t;,7m € M(m)) be the vector in the space (0,1)M™) where |M(m)] is
the number of the set M(m). From Taylor expansion, we have

O0n(t) = 0 (B, € M(m)) + D Ya(tin — ).
meM(m)

Substituting this expression into (1.6) and (1.7), we obtain

1 1
ma(m) = 0% 420, 3 /0 / (t = 0a)dbs T B (b, Y dtem,

meM(m) myeEM

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



1
+ L / / tm. - nl m H p7”| 7u| 1u|

meMn) myeM
1
+2 Z / . / (tl - 01\ )(tl - 01 wl\ u’l H p1n| iy )dtn“ )
ktenom Y 70 myeM

k£l
which together with (2.4), implies

my(m) — mqo(m) = 0,,(1 - 6,,) + R,
where the reminder R is of order o,(1) as N tends to co. O

Lemma 2.3 Suppose that m ¢ M,. Then under the conditions of Lemma 2.1, the
following holds

80111, )2 1 o
801;1 th + 1

my(m) — mi(m) = Y (

e M{m)

9,—,,_(1 - vn)+ Ol'( ™ )v (2-9)

where N, = min(N;,,m € M(m)).
Proof From Taylor expansion, we have

601n 1
0111(t) = Om + z (tvh - '")09 + 5 Z d’k.l(tk - ol)(tl - 01)’
meM () n kleM(n)
where ¥ stands for the second partial derivative 0—‘7”—‘%;,7 at (0,,m € M(m)) + &(ts —
6,n,7m € M(m)), € € [0,1]. Substituting the expresion of 8,,(t) into (1.6) and (1.7), we
obtain

601Il 1 ~
ml(m) = 01’" + E (tﬁt - 91h)p1h(t1h)dt1h
005, Ju
meMi(in) moe

1

+— Z / / ‘ﬁk d tk - 0‘\ tl - 01 H an' nn 1u|a

L leM(m) myeEM

mz(m) = 01271 + Z ( 0’7 )H-/“ (trh - orh)-i)ﬁx(tﬁ:.)dtrh

meMi{m)

aarn 1 .
+20m Z / (tvh - 01?' )prh(tﬁl)dtyh
- a m JU
meM{m)
+07n Z / / d’k[ tL - BL tl - 01 H pm. my )dtml
kleM(m) nmeEM

+2 > I3 60"' — 0:)pi(t:)dt;

kaer(m)yi=kld

k#l
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'*% /”1 - /”1( Z Yra(te — )t — 01))2 H Do, (ton, Ydton,

kleM(m) meM
a9"“.
+ Z EY / / ¢k 1 tk - ok)(tl - 0[)(tvu - 1n H Pm, (tvu| )dtm. .
klmeM{m) i myeEM

From these two equalities, we have

mZ(m) m}(m)

60171 1 - 2
= ao / (t'm. - 1u vh(tﬁl)dtvh - (/ (tﬁt - 01;l)p1;&(tﬁl)dtv;l) )
1n€M(7n) " 0
1

+Z(/ T / ( Z "/}L l(tl\ - OL tk - 61 H Pm, (tm| m.|

0 L deM () myeM

Z / / Yra(te — O )t — 61) H Drn, (o, )dtin, )?)

LIEM(").) n”EM

897" ! !
+ Z - .. A wll(t‘ - ok)(tl - 91)(t,.;1 e 017!

klmeM(mn) 891;‘ 0

1
_/ (trh - 01h)ﬁ1;l(t1h)dt1h) H ﬁm.(tnu )dtm| = Il + 12 + 13 (210)
u meM
For the first term in the right hand side of (2.10), we have

86111 Sru(sm + 1)
I =
! E ( 1n (Nm + 1)(N1u + 2)

mEM(m)
Sy Sy
—20.., m g2 _ " ~ 8, 2
N"t + 1 + m (N,n + l ) )

Z ( O 7 "'(]' - "l/(Nm + 1))
meM(m) aom (N'" + 1)(N1n + 2)

aom 9,'"(1 - ov'n) -3
= > (5) + Op(Nn?). (2.11)
mEM(m) aem th +1

For the second term in the right hand side of (2.10), the following inequality holds,

/ /U( S nalte - 0t — 0))° [] Ba)dta

kleM(n) meM
c Y // I (5 - 6:)*pi(ts)dts.
LIEM(m) v i=kl

Which shows that I, = O,(N,;2). The third term in the right hand side of (2.10) is
dominated by

11 ([ - o'aeas)

Op(Nru ? )

N

i=k.dn

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



So (2.9) holds. O
From Lemma 2.2 and Lemma 2.3, it is easy to know that

Bm(1 — Om) + 0p(1)

i + 1= _ _ . (2.12)
> (Gt o,k
meM(m) ™ m

Lemma 2.4 Under the conditions of Theorem 1.1, for every m € M, the following holds
-3
N]jm ﬁmOP(Nrnz) = 0, (2.13)

where N,, = min(N,,,m € M(m)) and N = min(n,,m € M).

Proof We prove this proposition by induction.
When m € Mg, from Condition 1.2, we have

'hvn

lim
N-oox N—g

m

=0.

So (2.13) holds.
Now suppose that m € M\My, and that for every m € M(m), (2.13) holds. Then
from (2.12), we have

iy + 1 _ 0m(1 - Hrn) + 01)(1)
T T 3 30, 5 0(1 — 6) R
Nﬁ; '-1_,1 m\2Ym ™ ) Nm._.
N (ﬁle%:(m)(aorh) Nﬁz + 1 + 01( )

From Condition 1.2 and the induction, it is to know that

lim ﬁ,,lO,,(N,,-ﬁ) = 0,

N—oxo
ie., (2.13) holds. O
Lemma 2.5 Under the conditions of Theorem 1.1, the following holds

661 1-1%

N‘(aof 90

) = 61(1 - 61) + 0p(1), (2.14)

where Ny is given by (1.1)-(1.7) iteratively.
Proof By Lemma 2.2 and Lemma 2.3, the following holds
0,,,(1 — 0n) + 0p(1)

36, 5 0(1 — 0,,) 3
P e v + O0p(Nm?)
e 005 N1

(2.15)

i + 1 =
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Let {N:,n.,m € M} be the collection of positive numbers, which is defined by the
following expressions recursively

07 m € MO)
0m(1 - 0m)
A = 5 (PO’ ™ & Mo, (2.16)
meM(m) 80,-;, N’;‘
N, =nm,+n,,. (2.17)

In Theorem 2.1 in 3], it was shown that N, which is defined by (2.16), (2.17) recursively,
is given by the following expression
o 061 ;1961
1heeT 08

) = 61(1 — 64).

Now to prove the lemma. It suffies to verify that the following expression

Aot
z ,j’ — 1 for m ¢ My, (2.18)
M,+1

Nj- —1 for me M. (2.19)

We prove these two formulas by induction. First, suppose that m € M, A'ccording to
the definition of N, and N,, (see (2.17) and (1.1)), we obtain

Nm+1_nn1+ﬁm+1

1
N N

i.e., (2.19) holds for m € Mj.
Let

My ={me M,M(m) C My}

be the collection of the subsystems which is the father of the last generation subsystem.
When m € M,, by (2.16) and (2.17), the following holds

Z (30m )zﬂfh(l - 65)
e Mm) 00 Tt Py
n 80111 0ﬁ1(1 - 07;1) -3 ’
™ Z ( i )2 i = + Op(Nm-)
heMim) 005" ng + i +1

which implies that
Nn+l np+an+l p
= —_—
N;;; Nm

i.e., (2.18) and (2.19) holds for m € M;.

1,
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Next suppose that m € M, and that, (2.18) and (2.19) hold for all m € M(m). By
Lemma 2.4,

Z (aom )2 0171(1 - eﬁl)
60171 N

ﬁm. + 1 meM(m m
2= = (14 0y(1)) i _
LU E (aom )201'n(1 - eﬁx) + 0 (N——_,-)
. . I) m
7;‘€ M(7n) 607". NT'l + 1

which implies
an +1 _ n,, + ﬁm +1 r

= -— 1,
N1”L n’"

ie., (2.18) and (2.19) hold for m. O

Lemma 2.6 Under the conditions of Theorem 1.1, the following holds

ﬁ"m +1 5"1 d
~Om) 1 M 2.20
an‘(l — 0"‘)(7'1"1 + 1 0",_) N(()’ ), m ¢ 0 ( )
and
Nyn + 1 Svu
p— m 1 M y 2.21
o"‘(l - 07’")(an + 1 ) N(O ) m 6 0 ( )

where #,,, 8, N,,, S,. are given by (1.1)-(1.7).

Proof We prove this lemma by induction. When m € M,, from C.L.T, it is easy to know
that (2.21) holds. Now suppose that m € M;. Then from (1.6) and Taylor expansion, we
have

S
m -0, = ml(m) -0,
8017; -
= a (t ru )pﬁn ( t ) dt
meM(m) m JU
1
+3 > /¢L1H ti — 6:)pi(t:)dt;
kleM( ) i=kl
ae‘"l Sﬁl
= Y 2 - - 05)
ﬁlEM(m) aom Nru +1
t; Y / it T] (& - 00t dts.
LlEM(ru) i=kl

From Lemma 2.2, 2.3, we know that the second term in the right hand of the above
equality is o,,(NLm). By C.L.T, we have that

Ny + 1 s
” m - 'u N O 1
0771(1 - om)(nm + 1 _* ( )
— 10 —
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i.e., (2.20) holds for m € M;. The indepence of S,; and m € M(m) ensure that (2.21)
holds for m € M,;.

Now suppose that m € M, (2.20) and (2.21) hold for every m € M(m). Similary, we
have

ﬁvu + 1 ( Sm
01“(1 - 0111) flnt + 1

Then from (1.6), we have

NTII- + 1 ( 51" n‘"l- n'Tl svu )
07"( 1" N'Il + 1 7" N’NL + 1 1“ - 1“. n‘”l 1“
nﬂl + 1 n"l. + 1 sln )
N’ll + 1 1" 07"-) n‘"l- + 1 ,“ '

o (S
0171(1 - em) Ny,

and s,, and 3,, are independent to each other, we have

nl) N(O 1)

From C.L.T,
- 8) =5 N(0,1),

N"L + 1 Sﬂl

d
- 011; I s 1.
9111(1 - em)(Nm +1 ) N(O 1)

Proof of Theorem 1.1 Theorem 1.1 follows by letting m = 1 in Lemma 2.5 and Lenuna
2.6.

Proof of Theorem 1.2 Let Z;,i = 1,---, N; be sequence of i.i.d random variables with

P(Zi:]»)zél)
P(Zi=0)=1-0,,

where P(A) is the condition probability of 4 given Ny, S;.
From (1.8) we know that
Z Zi - M6,
5 - Nyb,

>
\/N1 (1-6,) = VNi8,(1 - 6,)

By Berry-Esseen Theorem, it is easy to show that for almost all sequence of trials, the
sequence of condition distribution of

) =

M Zi— N6,
N16,(1 - 6,)
— 11 —
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tends to the standardized normal distribution, therefore

— N,6 N
—u, — 51 171 + ! (6, —61) > 0 wp 1,

VN16:(1 - 6y) 0:(1 - 86,)

which shows that the theorem holds. C
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