On Steffensen's Inequality *

Cao Yuan (Dept. of Math., Fudan University, Shanghai 200433)

Keywords inequality.

Classification AMS(1991) 26D15/CCL ()178

Theorem 1 Assume that two integrable functions f and g are defined on the intervel (a,b), that f never increases and that $0 \le g(t) \le 1$ in (a,b). Then steffensen's inequality [1] asserts that $\int_{b-\lambda}^{b} f(t)dt \le \int_{a}^{b} f(t)g(t)dt \le \int_{a}^{\alpha+\lambda} f(t)dt$, where $\lambda = \int_{a}^{b} g(t)dt$.

Denote $\Gamma(f) = \{f(t)|f(t) \text{ be a arbitrary monotone decreasing function, } t \in [a,b]\}.$ Our main result is

Theroem Let g(t) be an integrable function in [a,b]. Then for $f(t) \in \Gamma(f)$,

$$\int_a^b f(t)g(t)dt \leq \int_a^{a+\lambda} f(t)dt,$$

holds if and only if for any $\xi \in [a,b]$, $\int_a^{\xi} g(t)dt \leq \xi - a$, $\int_{\xi}^b g(t)dt \geq 0$, where $\lambda = \int_a^b g(t)dt$. Symmetrically

 $\int_{b}^{b} f(t)dt \leq \int_{a}^{b} f(t)g(t)dt$

holds if and only if for any $\eta \in [a,b], \int_a^\eta g(t)dt \geq 0, \quad \int_\eta^b g(t)dt \leq b-\eta.$

It is interesting thing, $\int_a^{\xi} g(t)dt \leq \xi - a$ and $\int_{\xi}^b g(t)dt \geq 0$ just corresponding to $g(t) \geq 0$ and $g(t) \leq 1$. If we modify the conditions in Theorem, we can obtain.

Corollary Let g(t) be an integrable function in [a,b] such that $g(t) \geq 0$. Then for $f(t) \in \Gamma(f)$, $\int_a^b f(t)g(t)dt \leq \int_a^{a+\lambda} f(t)dt$ holds if and only if for any $\zeta \in [a,b]$, $\int_a^{\zeta} g(t)dt \leq \zeta - a$, where $\lambda = \int_a^b g(t)dt$.

Similarly, if transfer $g(t) \geq 0$ to $g(t) \leq 1$, the necessary and sufficient condition in Corollary change into $\int_{\mathcal{C}}^{b} g(t)dt \geq 0$.

References

- [1] D.S.Mitrinović, Analytic Inequalities, Springer-Verlag Berlin Heidelberg New York, 1970.
- [2] Y.Cao, The Correction of Extension of Steffensen's Inequality, Journal of Mathematical Research and Exposition, 11:1 (1991), 151-153.

^{*}Received Apr.27, 1993. This work is supported by NNSF grant of China.