Hence we have

$$f(g) + \rho f(x - g_0) \le f[(x - g_0) - g],$$

that is, $0 \in R_{f,Y}^{\rho}(x-g_0)$. Since f is a sublinear function, we have $0 \in R_{f,Y}^{\rho}[t(x_0-g_0)]$ for each $t \geq 0$. This implies that, for every t > 0,

$$f(-g) + t\rho f(x - g_0) \le f[t(x - g_0) + g].$$
 (3.1)

Since f is symmetric, (3.1) implies that

$$\rho f(x-g_0) \leq [f[t(x-g_0)+g]-f(g)/t.$$

Hence $\tau_f(g, x_0 - g_0) \geq \rho f(x_0 - g_0)$. \square

References

- [1] P.Govindarajulu & D.V.Pai, On properties of sets related to f-projections, J. Math. Anal. Appl., 73(1980), 457-465.
- [2] G.S.Rao, Best coapproximation in normed linear spaces, in "Approximation Theory V", (E.D., by C.K.Chui, etc.), pp. 535-538, Academic Press, New York, 1986.
- [3] G.S.Rao & K.R.Chandrasekaran, The modulas of continuity of the set-valued cometric projection, in Methods of Functional Analysis in Approximation Theory (C.A.micchelli, D.V.Pai & B.V.Limaye, eds), Isnin, 76(1986), Birkhauser Verlag, Basel, pp.157-163.
- [4] G.S.Rao & S.Elumalai, Semicontinuity properties of the strong best coapproximation operator, Indian J. Pure Appl. Math., 16(3)(1985), 257-270.
- [5] B.N.Sahney, K.L.Singh & J.H.M.Whitfield, Best approximations in locally convex spaces, J. Approx. Theorey, 38(1983), 182-187.
- [6] Song Wenhua, A remark on the approximation in the locally convex spaces, Approximation, Optimization and Computig: Theory and Application, A.G.Law & C.L.Wang (eds.), pp. 179– 180, Elsevier Science Publishers B.V. (North-Holland), IMACS, 1990.

局部 凸空间的余逼近

宋文华

(河北经贸大学数学研究所, 石家庄 050061)

摘要

研究了在局部凸空间中的 f- 余逼近和强 f- 余逼近的一些性质.

Coapproximation in Locally Convex Spaces *

Song Wenhua
(Inst. of Math., Hebei Eco. & Comm. Univ., 050061)

Abstract The characterizations of f-coapproximation and strongly f-coapproximation in locally convex spaces are given.

Keywords f-coapproximation, strongly f-coapproximation, f- proximinal.

Classification AMS(1991) 41A65/CCL O174.41

1. Introduction

Let X and X' be a pair of linear spaces put in duality by a bilinear form <, >. We assume that this bilinear form <, > is separating, i.e., for each $x \in X$ and $x \neq 0$, there exists a y in X' such that $< x, y > \neq 0$ and, for each $y \in X'$ and $y \neq 0$, there exists an $x \in X$ such that $< x, y > \neq 0$. A topology on X is said to be *compatible* if it is a separated locally convex topology for which continuous linear functions on X are precisely of the form

$$\langle \cdot, y \rangle : x \rightarrow \langle x, y \rangle$$
, for $y \in X'$.

Let f be a continuous convex function defined on X and satisfy f(0) = 0. Given a nonempty Y of X and $x \in X$, let

$$f_Y(x) = \inf\{f(x-y); y \in Y\};$$

$$P_{f,Y}(x) = \{y \in Y; f_Y(x) = f(x-y)\};$$

The set-valued mapping $P_{f,Y}$ is called f-metric projection from X onto Y. Y is said to be f-proximinal (resp. f-Chebyshev) if $P_{f,Y}(x)$ is nonempty (resp. $P_{f,Y}(x)$ is a singleton) for each $x \in X$.

Let X be a locally convex space, Y a nonempty subset of X and f a real-valued function defined on X. For $x \in X$ and $g_0 \in Y$, if for every $g \in Y$,

$$f(g-g_0)\leq f(x-g),$$

then g_0 is called to be best f-coapproximation of x with respect to Y. We denote by $R_{f,Y}(x)$ all the best f-coapproximation of x with respect to Y.

^{*}Received Mar.4, 1994.

In section 2, we study the properties of f-coapproximations.

Given $0 < \rho < 1$, if for every $g \in Y$, $f(g - g_0) + \rho f(x - g_0) \le f(x - g)$, then g_0 is called to be strongly best f-coapproximation of x with respect to Y. We denote by $R_{f,Y}^{\rho}(x)$ all the strongly best f-coapproximation of x with respect to Y.

In section 3, we study the properties of strongly f-coapproximation. For r > 0, let

$$S_r = \{x \in X; f(x) \le r\}$$

denote the sub-level subset of f, and $P_r(x) = \inf\{\lambda > 0; x \in \lambda S_r\}$ denote the Minkowski gauge of S_r . Then P_r is a non-negative continuous sublinear function.

In this paper, we consider the following conditions:

(F1) There exists a continuous bijection $\psi: R_+ \mapsto R_+$ such that, for any $x \in X$ and $\lambda \geq 0$, $f(\lambda x) = \psi(\lambda)f(x)$ and f is continuous and convex.

(F2) f is a symmetric and sublinear function.

Obviously, if f satisfies the condition (F2), then f satisfies the condition (F1), and if there exists an $x \in X \setminus \{0\}$ such that f(x) > 0, then ψ is a convex function and $\psi(t) \to \infty$ as $t \to \infty$.

Lemma P.G. (P.Govindarajulu and D.V.Pai [1]) Suppose f satisfies the condition (F1) and $0 = f(0) \le f(x)$. Then for any $\alpha, \beta > 0$, $S_{\alpha} = (1/\beta)S_{\psi(\beta)\alpha}$, $P_{\alpha} = \beta P_{\psi(\beta)\alpha}$.

By this Lemma, we have $P_{P_{\alpha},Y}(x) = P_{P_{\beta},Y}(x)$, for any $x \in X$ and $\alpha,\beta > 0$.

2. The Best f-coapproximation

Let f be a real-valued continuous convex function defined on X. Given $x, y \in X$, obviously, h(t) = f(x + ty) is a convex function. Thus the limit

$$\tau_f(x, y) = \lim_{t \to 0+} [h(t) - h(0)]/t$$

is well defined.

The following Lemma is trivial.

Lemma 2.1. Let X and f be as above. Then $\tau_f(x,y) \leq 0$ if and only if, for each t > 0, $f(x + ty) \leq f(x)$.

Let

$$R'_{f,Y} = \{g_0 \in Y; \text{ for every } g \in Y, \tau_f(g_0 - g, x - g_0) \ge 0\}.$$
 $A_{f,Y} = \{u \in X; \text{ for every } g \in Y, f(u - g) \le f(x - g)\}.$
 $A'_{f,Y} = \{u \in Y; \text{ for every } g \in Y, \tau_f(u - g, x - u) \ge 0\}.$

Obviously,

$$R'_{f,Y} \subseteq R_{f,Y}; A'_{f,Y} \subseteq A_{f,Y}; R'_{f,Y} = R_{f,Y} \cap Y; A'_{f,Y} = A_{f,Y} \cap Y.$$

Lemma 2.2. Let f satisfy the continuous convex function defined on X, Y a subspace of X and $x \in X \setminus Y$. Then $u \in A'_{f,Y}(x)$ if and only if, for every $g \in Y$, $0 \in P_{f,R-[u-x]}(u-g)$

where $R_{-}[u-x] = \{t(u-x); t \leq 0\}.$

Proof By lemma 2.1, if $u \in A'_{t,Y}(x)$, then, for every $t \leq 0$, we have

$$f[(u-g)-tf(x-u)] \geq f(u-g).$$

So $0 \in P_{f,R_{-}[u-x]}(u-g)$.

The inverse proof of the other part is similar.

Theorem 2.3 Let X be a locally convex space and f a real-valued function defined on X which satisfies the condition (F2). Let Y be subset of X, $x_0 \in X \setminus Y$ and $g_0 \in Y$. Then $g_0 \in R'_{f,Y}(x_0)$ if and only if, for every $g \in Y$, when $f(g - g_0) \neq 0$, there exists a $\phi \in X'$ such that

- (a) For every $u \in X$, $\phi(u) \leq f(u)$.
- (b) $\phi(x_0-g_0)\geq 0$.
- (c) $\phi(g_0-g)=f(g_0-g)$.

Proof By (b), we have $\phi[t(g_0 - x_0)] \le 0$ for $t \ge 0$. By (a), we have

$$f(g_0-g) = \phi(g_0-g) \le \phi(g_0-g) - \phi[t(g_0-x_0)]$$

= $\phi[(g_0-g) - t(g_0-x_0)] \le f[(g_0-g) - t(g_0-x_0)].$

Hence $\tau_f(g_0 - g, x_0 - g_0) \ge 0$ and $g_0 \in R'_{f,Y}(x_0)$, we complete the proof of sufficience.

Let $g_0 \in R'_{f,Y}(x_0)$. Given $g \in Y$, assume that $f(g - g_0) = r > 0$. Since $\tau_f(g_0 - g, x_0 - g_0) \ge 0$, by lemma 2.1, for each $t \ge 0$,

$$f(g_0 - g) \le [(g_0 - g) + t(x_0 - g_0)] = f[(g_0 - g) - t(g_0 - x_0)]. \tag{2.1}$$

Hence $0 \in P_{f,R_{+}[g_{0}-x_{0}]}(g_{0}-g)$. Let

$$B = \{v \in X; f[v - (g_0 - g)] < r\}.$$

Then B is nonempty and an open subset of X since f is continuous. By (2.1), $B \cap R_+[g_0 - x_0] = \emptyset$. By separable Theorem, There exist $\phi_0 \in X'$ and $c_0 \in R$ such that, when $y \in B$ and $t \ge 0$,

$$\phi_0[t(x_0-g_0)] \le c_0 < \phi(y). \tag{2.2}$$

Obviously, $c_0 \ge 0$. Hence we have

$$\phi_0(g_0-x_0)\leq c_0/t\mapsto 0,\ (t\mapsto \infty)$$

that is, $\phi_0(x_0 - g_0) \ge 0$. Since $g_0 - g \in B$, by (2.2), we have $\phi_0(g_0 - g) > 0$. Let $\phi = r \cdot \phi_0/\phi_0(g_0 - g)$. Evidently, (b) and (c) hold. It remains to prove (a). Let $V = \{v \in X; f(v) < r\}$. For any $v \in V$, $v + g_0 - g \in B$. So $\phi(g_0 - g) \ge \phi(-v)$. Since f is symmetric, so V is symmetric. Hence, for every $v \in V$, $\phi(v) \le \phi(g_0 - g) = r$. Since f and ϕ are continuous, we have, when f(v) = r, $\phi(v) < r$. Since f is sublinear, so (a) holds.

Theorem 2.4 Let X, Y and f be as in Theorem 2.3. Then the following statements are equivalent.

- (1) $R'_{f,Y}(x_0) = R_{f,Y}(x_0)$.
- (2) If $g_0 \in R_{f,Y}(x_0)$, then for every $g \in Y$, $\tau_f(g_0 g, x_0 g_0) \ge 0$.
- (3) If $g_0 \in R_{f,Y}(x_0)$, then for every $g \in Y$,

$$\sup\{\phi(x_0 - g_0 0; \ \phi \in L_{(g_0 - G)}\} \le 0$$

where $L_u = \{\phi \in X' | \text{ for every } v \in X, \phi(v) \leq f(v) \text{ and } \phi(u) = f(u) \}.$

Proof By definition and Theorem 2.3, $(1)\Rightarrow(2)$ and $(2)\Rightarrow(3)$ are trivial.

It remains to show (3) \Rightarrow (1). Given $g \in Y$, by assumption, for every $\varepsilon > 0$, there exists $\phi \in L_{g_0-g}$ such that

$$\phi(x_0-g_0)\geq -\varepsilon.$$

Hence, when $0 < t \le 1$, we have

$$0 \leq \phi[t(x_0 - g_0] + t\varepsilon.$$

Since $\phi \in L_{g_0-g}$, we have

$$f(g_0-g) = \phi(g_0-g) \leq g(g_0-g) + t\phi(x_0-g_0) + t\varepsilon$$

= $\phi[(g_0-g_0+t(x_0-g_0))] + t\varepsilon$.

Thus $au_f(g_0-g\ ,\ x_0-g_0)\geq -arepsilon.$ Hence $au_f(g_0-g\ ,\ x_0-g_0)\geq 0,$ that is, $g_0\in R'_{f,Y}(x_0).$

Theorem 2.5 Let X, Y and f be as in Theorem 2.3. If $g_0 \in A'_{f,Y}(x_0)$, then, when $t \ge 0$, $g_0 \in A'_{f,Y}[g_0 + t(x_0 - g_0)]$.

Proof Let $v_t = g_0 + t(x_0 - g_0)$. Since $v_0 = g_0$ and for every $u \in X$, $\tau_f(u, 0) = 0$, $g_0 \in A'_{f,Y}(v_0)$. Let $t_0 > 0$. Since $g_0 \in A'_{f,Y}(x_0)$, by Lemma 2.1, we have

$$\tau_f(g_0-g, x_0-g_0)\geq 0.$$

By Lemma 2.1, for every $\lambda > 0$,

$$f[(g_0-g)+\lambda(x_0-g_0)]-f(g_0-g)\leq 0.$$

Hence

$$f[(g_0-g)+tt_0(x_0-g_0)] \geq f(g_0-g),$$

and $\tau_f(g_0-g,t_0(x_0-g_0)) \geq 0$. Since $t_0(x_0-g_0)=v_{t_0}-g_0$, so $g_0 \in A'_{f,Y}(v_{t_0})$. \square

Theorem 2.6 Let X, Y and f satisfy the conditions in Theorem 2.3. Then the following statements are equivalent.

- (1) For each $x \in X$, $R_{f,Y}(x) = R'_{f,Y}(x)$.
- (2) For each $x \in X$ and $g_0 \in R_{f,Y}(x)$, then, for every t > 0,

$$g_0 \in R_{f,Y}[g_0 + t(x - g_0)].$$

(3) For every $g_0 \in Y$, $[R_{f,Y}]^{-1}(g_0)$ is a cone with the vertix 0.

Proof $(2) \Leftrightarrow (3)$ is obvious.

In an analogous way to the proof of Theorem 2.5, we can get $(1) \Rightarrow (3)$.

(3) \Rightarrow (1). For every $g \in Y$ and t > 0, since $g_0 \in R_{f,Y}[g_0 + t(x - g_0)]$, we have

$$f(g_0-g)\leq f[g_0+t(x-g_0)-g]=f[(g_0-g)+t(x-g_0)].$$

Hence $\tau_f(g_0-g, x-g_0)\geq 0$. \square

Lemma 2.7 Let X be locally convex space and f a symmetric real-valued function defined on X which satisfies the condition (F1) and f(0) = 0. Then for any $x, y \in X$ and r > 0, $\tau_f(x, y) \ge 0$ if and only if $\tau_{P_r}(x, y) \ge 0$.

Proof By Lemma P.G., given $u, v \in X$, if there exists r > 0 such that $P_r(u) \leq P_r(v)$, then, for every $\lambda > 0$,

$$P_{\lambda}(u) \le P_{\lambda}(v). \tag{2.1}$$

By Lemma 2.1, $\tau_f(x,y) \geq 0$ if and only if

$$f(x) \le f(x+ty). \tag{2.2}$$

By Lemma 2.3 of [6], (2.2) \Leftrightarrow , for any r > 0 and $t \ge 0$

$$P_r(x) \ge P_r(x+ty). \tag{2.3}$$

Obviously, $(2.3) \Leftrightarrow \tau_{P_r}(x,y) \geq 0$. \Box

Remark By Lemma 2.7, the condition (F2) in Theorem 2.3, 2.4 2.5 and 2.6 can be replaced by the conditions in Lemma 2.7.

3. The Strongly f-coapproximation

Lemma 3.1 Let f be a real-valued function defined on a locally convex space X which is a non-negetive and convex function and f(0) = 0 and Y a subset of X. For $x_0 \in X$ and $g_0 \in Y$, if, for every $g \in Y$, $\tau_f(g_0 - g, x_0 - g_0) \ge \rho f(x_0 - g_0)$, then $g_0 \in R_{f,Y}^{\rho}(x_0)$.

Proof Since $f[(g_0-g)+t(x_0-g_0)]$ is a convex function, so $\tau_f(g_0-g,x_0-g_0) \ge \rho f(x_0-g_0)$ implies that, for each t>0,

$$\rho f(x_0 - g_0) \leq f[(g_0 - g) + t(x_0 - g_0)] - f(g_0 - g).$$

This is the definition of $g_0 \in R_{f,Y}^{\rho}(x_0)$. \square

Remark The inverse of Lemma 3.1 is not true in general, except when Y is a subspace of X.

Theorem 3.2. Let Y be a subspace of X and f satisfy the condition (F2). Then $g_0 \in R_{f,Y}^{\rho}(x_0)$ if and only if, for every $g \in Y$, $\tau_f(g, x_0 - g_0) \ge \rho f(x_0 - g_0)$.

Proof we need only to show the necessarify. Since $g_0 \in R_{f,Y}^{\rho}(x_0)$, for every $g \in Y$, we have

$$f(g-g_0)+\rho f(x-g_0)\leq f(x-g).$$

Hence we have

$$f(g) + \rho f(x - g_0) \le f[(x - g_0) - g],$$

that is, $0 \in R_{f,Y}^{\rho}(x-g_0)$. Since f is a sublinear function, we have $0 \in R_{f,Y}^{\rho}[t(x_0-g_0)]$ for each $t \geq 0$. This implies that, for every t > 0,

$$f(-g) + t\rho f(x - g_0) \le f[t(x - g_0) + g].$$
 (3.1)

Since f is symmetric, (3.1) implies that

$$\rho f(x-g_0) \leq [f[t(x-g_0)+g]-f(g)/t.$$

Hence $\tau_f(g, x_0 - g_0) \geq \rho f(x_0 - g_0)$. \square

References

- [1] P.Govindarajulu & D.V.Pai, On properties of sets related to f-projections, J. Math. Anal. Appl., 73(1980), 457-465.
- [2] G.S.Rao, Best coapproximation in normed linear spaces, in "Approximation Theory V", (E.D., by C.K.Chui, etc.), pp. 535-538, Academic Press, New York, 1986.
- [3] G.S.Rao & K.R.Chandrasekaran, The modulas of continuity of the set-valued cometric projection, in Methods of Functional Analysis in Approximation Theory (C.A.micchelli, D.V.Pai & B.V.Limaye, eds), Isnin, 76(1986), Birkhauser Verlag, Basel, pp.157-163.
- [4] G.S.Rao & S.Elumalai, Semicontinuity properties of the strong best coapproximation operator, Indian J. Pure Appl. Math., 16(3)(1985), 257-270.
- [5] B.N.Sahney, K.L.Singh & J.H.M.Whitfield, Best approximations in locally convex spaces, J. Approx. Theorey, 38(1983), 182-187.
- [6] Song Wenhua, A remark on the approximation in the locally convex spaces, Approximation, Optimization and Computig: Theory and Application, A.G.Law & C.L.Wang (eds.), pp. 179– 180, Elsevier Science Publishers B.V. (North-Holland), IMACS, 1990.

局部 凸空间的余逼近

宋文华

(河北经贸大学数学研究所, 石家庄 050061)

摘要

研究了在局部凸空间中的 f- 余逼近和强 f- 余逼近的一些性质.