Hence we have
f(g)+ pf(z — g0) < fl(z — 90) — 9}y

that is, 0 € R} y(z — go). Since f is a sublinear function, we have 0 € Rf y[t(zo — g0)] for
each t > 0. This implies that, for every t > 0,

f(—9) +tof(z — go) < flt(z — go) + g} (3.1)

Since f is symmetric, (3.1) implies that
pf(z — 90) < [f[t(z - 90) + g} - flg)/t.

Hence 74(g,20 — go) > pf(zo — gv). O
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Abstract The characterizations of f-coapproximation and strongly f-coapproximation
in locally convex spaces are given.

Keywords f-coapproximation, strongly f-coapproximation, f- proximinal.
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1. Introduction

Let X and X' be a pair of linear spaces put in duality by a bilinear form < , >. We
assume that this bilinear form < , > is separating, i.e., for each 2 € X and z # 0, there
exists a y in X’ such that < z,y ># 0 and, for each y € X’ and y # 0, there exists an
z € X such that < z,y ># 0. A topology on X is said to be compatible if it is a separated
locally convex topology for which continuous linear functions on X are precisely of the
form

< -,y>:z—-<z,y>, for ye X'

Let f be a continuous convex function defined on X and satisfy f(0) = 0. Given a
nonempty Y of X and z € X, let
fr(z) =inf{f(z -y); yeY}

Pry(z)={yeY; fr(z)=flz -y}
The set-valued mapping P;y is called f-metric projection from X onto Y. Y is said to be
f-proximinal (resp. f-Chebyshev) if Psy(z) is nonempty (resp. Pyy(z) is a singleton)
for each z € X.
Let X be a locally convex space, Y a nonempty subset of X and f a real-valued
function defined on X. For z € X and gy € Y, if for every g € Y,

(g - 90) < f(z - g),

then gg is called to be best f-coapproximation of = with respect to Y. We denote by
R;y(z) all the best f-coapproximation of z with respect to Y.

*Received Mar.4, 1994,
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In section 2, we study the properties of f-coapproximations.

Given 0 < p < 1, if for every g € Y, f(g — go) + pf(z — gu) < f(z — g), then gg is called
to be strongly best f-coapproximation of z with respect to Y. We denote by R?‘y(z) all
the strongly best f-coapproximation of z with respect to Y.

In section 3,we study the properties of strongly f-coapproximation. For r > 0, let

Sr={zeX; f(z)<r}

denote the sub-level subset of f, and P,(z) = inf{\ > 0;z € AS,} denote the Minkowski
gauge of S,. Then P, is a non-negative continuous sublinear function.

In this paper, we consider the following conditions:

(F1) There exists a continuous bijection % : R, ~— Ry such that, for any z € X and
A >0, f(Az) = Y(A)f(z) and f is continuous and convex.

(F2) f is a symmetric and sublinear function.

Obviously, if f satisfies the condition (F2), then f satisfies the condition (F1), and if
there exists an z € X\ {0} such that f(z) > 0, then 9 is a convex function and ¥(t) — oo
ast — 0o.

Lemma P.G. (P.Govindarajulu and D.V.Pai [1]) Suppose f satisfies the condition (F1)
and 0 = f(0) < f(z). Then for any a,B > 0,5 = (1/8)Sy(p)cr» P = BPy(a)a-
By this Lemma, we have Pp_y(z) = Pp,y(z), for any z € X and a,8 > 0.

2. The Best f-coapproximation

Let f be a real-valued continuous convex function defined on X. Given z,y € X,
obviously, h(t) = f(z + ty) is a convex function. Thus the limit

Te(z , y) = limuo4[h(t) — h(0)]/t

is well defined.

The following Lemma is trivial.

Lemma 2.1. Let X and f be as above. Then 7¢(z,y) < 0 if and only if, for each
t>0, f(z +ty) < f(=2). '

Let
R’f’Y = {go€Y; forevery g€ Y, 1/(90 -9,z —gu) > 0}.
Ajy = {ueX; forevery g€VY,f(u—g)< f(z - 9)}.
,f,Y = {u€Y,; forevery geY,74(u—-g,2-u)2 0}.
Obviously,

Ryy C Rpy; Ay CAsy; Rjy =RpynY; A}y = Asy NY.

Lemma 2.2. Let f satisfy the continuous convex function defined on X,Y a subspace of
X andz € X\Y. Then u € Ay () if and only if, forevery g€ Y, 0 € Psr_fu-z)(u—9)
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where R_[u — z] = {t(u — z);t < 0}.

Proof By lemma 2.1, if u € A%y (), then, for every ¢ < 0, we have

fllu-g)-tf(z —u)] 2 f(u-g)

So0 € P,’R_[u_,](u - 9).
The inverse proof of the other part is similar. O

Theorem 2.3 Let X be a locally convex space and f a real-valued function defined on
X which satisfies the condition (F2). Let Y be subset of X, zo € X \Y and go € Y. Then
go € R'f_y(zo) if and only if, for every g € Y, when f(g — go) # 0, there exists a ¢ € X'
such that

(a) Forevery u € X, ¢(u) < f(u).

(b) #(zo — go) > 0.

(c) #(90 - g) = f(90 - g).

Proof By (b), we have ¢[t(go — z0)] < 0 for t > 0. By (a), we have
f(go-9) = &(g0—9) < d(go - 9) = $[t(90 — z0)]
él(90 ~ 9) = t(g0 — z0)] < f(g0 — 9) — t(gv — z0)).

Hence 7¢(go — 9,20 — 90) > 0 and g, € R'f_y(:co). we complete the proof of sufficience.
Let go € R}y (z0). Given g €Y, assume that f(g — go) = r > 0. Since 14(g0 — 9,20 —
go) > 0, by lemma 2.1, for each ¢t > 0,

f(90 — 9) < [(90 — 9) + t(zo - 90)] = fl(90 — 9) — t(go — 20)]- (2.1)

Hence 0 € Py R, (gy—z,)(90 — 9)- Let
B={veX; flv-(g90—g)]<r}

Then B is nonempty and an open subset of X since f is continuous. By (2.1), BN Ry [go —
zo] = 0. By separable Theorem, There exist ¢, € X’ and ¢y € R such that, when y € B
and t > 0,

o(t(zo — g0)] < co < (y). (2.2)

Obviously, ¢p > 0. Hence we have
¢0(g0 - zu) S Cu/t — 0, (t — OO)

that is, ¢o(z0 — go) > 0. Since go — g € B, by (2.2), we have ¢o(go — g) > 0. Let
¢ = r-¢o/do(g90o — g). Evidently, (b) and (c) hold. It remains to prove (a). Let V =
{veX; f(v)<r}. ForanyveV,v+gy—g€ B. So ¢(go — g) > ¢(~v). Since f is
symmetric, so V is symmtric. Hence, for every v € V, ¢(v) < ¢(go — g) = . Since f and
¢ are continuous, we have, when f(v) = r, ¢(v) < r. Since f is sublinear, so (a) holds.

Theprem 2.4 Let X,Y and f be as in Theorem 2.3. Then the following statements are
equivalent.
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(1) Ryy(z0) = Ryy(zo)
(2) If go € Ry y(zo), then for every g € Y, 4(g0 — ¢ , o — g0) > 0.
(3) If go € Ryy(z0), then for every g €Y,

sup{¢(zo — 900; ¢ € Lig,-c)} <O
where L, = {¢ € X'; for every v € X, ¢(v) < f(v) and ¢(u) = f(u)}.

Proof By definition agd Theorem 2.3, (1)=>(2) and (2) =>(3) are trivial.
It remains to show (3) = (1). Given g € Y, by assumption, for every € > 0, there
exists ¢ € Ly, _, such that
#(zo — go) > —¢.

Hence, when 0 < t < 1, we have
0 < ¢lt(zo — go] + te.

Since ¢ € Ly _g, we have

flgo—9) = &(go—9) < 9(g90—g)+td(zo— go) + te
= ¢[(g0 — g0 + t(zo — gu)] + te.
Thus 74(go— 9 , 2o — go) > —¢. Hence 74(go — g , o — go) > 0, that is, go € R'!'Y(zo). o

Theorem 2.5 Let X,Y and f be as in Theorem 2.3. If gy € A}’Y(zo), then, when t > 0,
90 € Ay ylgo + t(zo — g0)]- .

Proof Let v, = go + t(zo — go). Since vy = go and ,for every u € X, 7¢(u,0) = 0,
go € A’Ly(vo). Let to > 0. Since go € A},y(zo), by Lemma 2.1, we have

74(90 ~ 9, ®o— go) 2 0.

By Lemma 2.1, for every A > 0,

fl(go — g) + M=o — 90)] — f(g0 - g) < 0.

Hence
fl(90 — 9) + tto(zo — 90)] > f(90 — 9),

and 7¢(go — g,to(zo — go)) 2 0. Since to(zo — go) = vs, — go, 50 go € Ayy(vy). O

Theorem 2.6 Let X,Y and f satisfy the conditions in Theorem 2.3. Then the following
statements are equivalent.

(1) Foreachz € X, Ryy(z) = Ry (z).

(2) For each z € X and go € Ry y(z), then, for every t > 0,

90 € Ryy[go + t(z - go)].

(3) For every go € Y, [Rsy] '(go) is a cone with the vertix 0.
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Proof (2) & (3) is obvious.
In an analogous way to the proof of Theorem 2.5, we can get (1) = (3).
(3) = (1). For every g € Y and t > 0, since go € Rjy[go + t(z — go)], we have

f(g0 — 9) < flgo + t(z — g90) — 9] = fl(90 — 9) + t(z — go0))-
Hence 74(90— 9, 2 —g0) 2 0. O

Lemma 2.7 Let X be locally convex space and f a symmetric real-valued function '
defined on X which satisfies the condition (F1) and f(0) = 0. Then for any z,y € X and
r > 0, 74(z,y) > 0 if and only if p (z,y) > 0.

Proof By Lemma P.G., given u,v € X, if there exists » > 0 such that P.(u) < P.(v),
then, for every A > 0,

Px(u) < Pi(v). (2.1)
By Lemma 2.1, 74(2,y) > 0 if and only if
f(z) < f(z + ty). (2.2)

By Lemma 2.3 of [6], (2.2) &, for any » > Oandt;0
P.(z) 2 P.(z + ty). (2.3)
Obviously, (2.3) & 7p.(z,y) > 0. O

Remark By Lemma 2.7, the condition (F2) in Theorem 2.3, 2.4 2.5 and 2.6 can be
replaced by the conditions in Lemma 2.7.

3. The Strongly f-coapproximation

Lemma 3.1 Let f be a real-valued function defined on a locally convex space X which
is a non-negetive and convex function and f(0) = 0 and Y a subset of X. For z5 € X and
9 €Y, if, for every g € Y, 74(go ~ 9,20 — go) > pf(20 — go), then go € R}y (z0).

Proof Since f[(go—g)+t(zo—go)] is a convex fonction, so 74(go—9g,zo—g0) > pf(z0— go)
implies that, for each ¢t > 0,

pf(zo — go) < fl(g0 — g) + t(zo — g0)] — f(go — 9)-
This is the definition of go € R';'y(zg). o

Remark The inverse of Lemma 3.1 is not true in general, except when Y is a subspace
of X.

Theorem 3.2. Let Y be a subspace of X and f satisfy the condition (F2). Then
90 € R}y (20) if and only if, for every g € Y, 74(g, 20 — go) > pf(z0 — go).

Proof we need only to show the necessarify. Since gy € R’;’Y(zo), for every g € Y, we
have

f(g = 90) + pf(z — g0) < f(z - 9).
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Hence we have
f(g)+ pf(z — g0) < fl(z — 90) — 9}y

that is, 0 € R} y(z — go). Since f is a sublinear function, we have 0 € Rf y[t(zo — g0)] for
each t > 0. This implies that, for every t > 0,

f(—9) +tof(z — go) < flt(z — go) + g} (3.1)

Since f is symmetric, (3.1) implies that
pf(z — 90) < [f[t(z - 90) + g} - flg)/t.

Hence 74(g,20 — go) > pf(zo — gv). O
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