else (i.e.,
$$v^{(i)} \in V_S(\triangle)$$
)

$$w_i = 0, \quad z_i = 0, \quad w_i' = \sigma_1^{(i)},$$

and in the later case (i.e., $v^{(i)} \in V_S(\triangle)$), all the elements in the 2i-th row of matrix A equal null since 2i-th equation in (4.1) is in fact an identity.

Hence, we can see easily that the coefficient matrix A in (4.2) can be transformed into an echelon matrix by exchanging its rows, and the rank of A is $2\beta - \gamma$. Therefore we have

$$\dim \hat{S}_2^0(\triangle) = \dim S_2^0(\triangle) - \operatorname{rank}(A) = \alpha + \rho - (2\beta - \gamma).$$

Which together with theorem 2 gives the following main result.

Theorem 3 Let Ω be a simply connected polygonal region in \mathbb{R}^2 and \triangle be a triangulation of Ω . If (Ω, \triangle) is type-X and \triangle is a stratified triangulation, then

$$\dim S_3^1(\triangle) = \alpha + \rho - 2\beta + \gamma + 4.$$

Acknowledgment The author is grateful to the referee for his valuable suggestions on the original version of this paper.

References

- [1] L.L.Schumaker, On the dimension of spaces of piecewise polynomials in two variables, Multivariate Approximation Theory, Birkhauser, Basel, 1979, 396-412.
- [2] C.K.Chui and Wang Renhong, Multivariate spline spaces, J. Math. Anal. Appl., 94(1983), 197–221.
- [3] Liu Huanwen, An integral representation of bivariate splines and the dimension of quadratic spline spaces over stratified triangulation, Acta Math. Sinica, Vol.37, No.4(1994), 534-543.
- [4] G.Farin, Bezier polynomial over triangles and the construction of piecewise C^r polynomials, TR/91, Brund Univ., 1980.

一类分层三角剖分下三次样条空间的维数

刘 焕 文 (广西民族学院数学系, 南宁 530006)

摘要

本文定义了平面单连通多边形域的一类较任意的三角剖分—— 分层三角剖分,并通过分析二元样条的积分协调条件,确定了分层三角剖分下三次 C^1 样条函数空间的维数

The Dimension of Cubic Spline Space over Stratified Triangulation *

Liu Huanwen

(Dept. of Math. Guangxi Univ of Nationalities, Nanning 530006)

Abstract In this paper, a kind of so-called stratified triangulation is defined. By analysing the integral conformality condition of bivariate spline, we determine the dimension of space of cubic splines over stratified triangulation.

Keywords integral conformality condition, cubic spline, stratified triangulation, dimension.

Classification AMS(1991) 65D07,41A63/CCL ()241.5

1. Introduction

Let $\Omega \subset \mathbb{R}^2$ be a connected polygonal domain, which does not contain any hole. Let Δ be a triangulation^[1] of Ω and denote

 $V_I(\triangle) := \text{all the interior vertices of } \triangle$

 $V_B(\triangle) :=$ all the boundary vertices of \triangle

 $E_I(\triangle) := \text{all the interior edges of } \triangle$

 $E(\triangle) := \text{all the edges of } \triangle$

 $V(\triangle) := V_I(\triangle) \cup V_B(\triangle)$

We call (Ω, \triangle) to be type-X provided that there exists a rectangular coordinates system XOY such that the slope of any edge of \triangle in XOY equals neither 0 not ∞ and the number of the intersection points of $\partial\Omega$ and any straight line which parallels X-axis is no more than two. For example, (Ω, \triangle) is always type-X for any triangulation \triangle when Ω is a connected convex polygonal region. We will merely consider the case that (Ω, \triangle) is type-X throughout this paper.

Set up a rectangular coordinate system XOY as required above. Clearly, the two boundary vertices of \triangle with the maximum ordinate and the minimum ordinate divide $\partial\Omega$ into two parts. The left one is denoted by $\partial^-\Omega$ and the set of the vertices on $\partial^-\Omega$ is denoted by $V_B^-(\triangle)$ except for the end points.

Suppose the vertices in $V_I(\triangle)$ are labeled $v^{(i)}, i = 1, 2, \dots, |V_I(\triangle)|$, here $|V_I(\triangle)|$ is the cardinality of $V_I(\triangle)$. For each $v^{(i)} \in V_I(\triangle)$, the union of all the triangles with

^{*}Received Sep.17, 1993.

the common vertex $v^{(i)}$ is called a vertex star and denoted by $U(v^{(i)})$. We denote the boundary vertices of $U(v^{(i)})$, in the counterclockweise direction, by $v_j^{(i)}$, $j=1,2,\cdots,d_i$, where d_i is the number of the edges emanating from v(i), and set $v^{(i)}=v_0^{(i)}$, $e_j^{(i)}=v_0^{(i)}v_j^{(i)}$ and $k_j^{(i)}=\operatorname{slope}(e_j^{(i)})$. Clearly, $e_j^{(i)}$ can be described by the equation $x=l_j^{(i)}(y)$, where $l_j^{(i)}(y):=x_0^{(i)}+(y-y_0^{(i)})/k_j^{(i)}$ and $(x_0^{(i)},y_0^{(i)})$ is the coordinate of $v_0^{(i)}$. In addition, the triangle between $e_j^{(i)}$ and $e_{j+1}^{(i)}$ is denoted by $T_j^{(i)}$, $j=1,\cdots,d_i$.

 $u_{0}^{(1)}$ $u_{0}^{(1)}$ $u_{0}^{(1)}$ $u_{10}^{(1)}$ $u_{11}^{(1)}$ $u_{12}^{(1)}$ $u_{12}^{(1)}$ $u_{11}^{(1)}$ $u_{12}^{(1)}$

Figure 2

As shown in Fig.1, from bottom to top, we label consecutively all the vertices on $\partial^-\Omega \ v_i', i=0,1,\cdots,n, n+1$. And for $i=1,\cdots,n$, we number all the edges attached to v_i' counterclockwise and label them $e_{ij}', j=1,\cdots,d_i'$, here we have put $e_{i1}'=v_{i-1}'v_i'$. Note that the above-mentioned assumption of slope $(e)\neq 0,\infty$ for any $e\in E(\Delta)$, the equation of e_{ij}' can be denoted by $x=\psi_{ij}(y), i=1,\cdots,n, j=1,\cdots,d_i'$. In addition, we let T_{ij}' stand for the triangle between e_{ij}' and e_{ij+1}' .

From the assumption that (Ω, \triangle) is type-X, we can see easily that the projections of vertices $v_i'(i = 0, 1, \dots, n, n + 1)$ in Y-axis form a univariate partition \triangle_y of interval [m, M] as follows

$$\triangle_y : m = y'_0 < y'_1 < \cdots < y'_n < y'_{n+1} = M,$$

where y_i' is the ordinate of v_i' . We denote the equation of the broken line on which $\partial^-\Omega$ lies by $x = \Phi(y)$:

$$\Phi(y) := \left\{ egin{array}{ll} \psi_{i1}(y), & y \in [y'_{i-1}, y'_i), i = 1, \cdots, n, \ \psi_{nd'_n}(y), & y \in [y'_n, y'_{n+1}]. \end{array}
ight.$$

For $0 \le r \le k-1$, where r and k are integers, we define $S_k^r(\triangle)$ to be vector space of C^r functions which are piecewise polynomials with total degree at most k over each triangle of \triangle . The space $S_k^r(\triangle)$ is called a bivariate spline space.

Let \prod_k denote the space of bivariate polynomials with total degree k. As is well known, a necessary and sufficient condition for $s \in S_k^r(\triangle)$ is that the following conformality

condition[2]

$$\sum_{i=1}^{d_i} q_j^{(i)}(x, y) [x - l_j^{(i)}(y)]^{r+1} \equiv 0$$
 (1.1)

holds for any $v_0^{(i)} \in V_I(\triangle)$, where $q_j^{(i)} \in \prod_{k-r-1}$ is the smoothing cofactor of s from $T_{j-1}^{(i)}$ to $T_j^{(i)}$ across $e_j^{(i)}$ and satisfying

$$s(x,y)|T_j^{(i)} - s(x,y)|T_j^{(i)} = q_j^{(i)}[x - l_j^{(i)}(y)]^{r+1}.$$
(1.2)

Recently, in [3], another new identity, namely:

$$\sum_{i=2}^{d_i} \int_{l_1^{(i)}(y)}^{l_j^{(i)}(y)} q_j^{(i)}(x,y) [x - l_j^{(i)}(y)]^{r+1} dx \equiv 0, \qquad (1.3)$$

called the integral conformality condition of spline function s at the interior vertex $v_0^{(i)}$, was introduced. And a kind of related spline space $\hat{S}_k^r(\triangle)$ was defined to be composed of s such that

- 1) $s \in S_k^r(\Delta)$;
- 2) the integral conformality condition (1.3) holds at each $v_0^{(i)} \in V_I(\triangle)$. On the basis of these, [3] obtained the following

Theorem 1 Let $1 \le r \le k-1$ and (Ω, \triangle) by type-X, then a necessary and sufficient condition for $s \in S_k^r(\triangle)$ is that s can be expressed as

$$s(x,y) = \xi(y) + \int_{\frac{\pi}{2}(y)}^{x} \eta(x,y) dx, \qquad (1.4)$$

where $\eta \in \hat{S}_{k-1}^{r-1}(\triangle)$, and $\xi(y)$ is a univariate piecewise polynomial with degree k on \triangle_y such that

$$\xi_i(y) = \xi_0(y) + \sum_{t=1}^i \sum_{j=1}^{d_i'-1} \int_{\psi_{ij}(y)}^{\psi_{ij+1}(y)} \eta_j^{(t)}(x,y) dx, \quad i=1,\cdots,n,$$

with $\xi_i(y) := \xi(y)|_{[y'_i,y'_{i+1}]}, i = 0,1,\dots,n$, and $\eta_j^{(i)}(x,y) := \eta(x,y)|_{T'_{ij}}, i = 1,\dots,n,j = 1,\dots,d'_i-1$.

Theorem 2 Let \triangle be a triangulation of Ω such that (Ω, Δ) is type-X, then

$$\dim S_k^r(\triangle) = (k+1) + \dim \hat{S}_{k-1}^{r-1}(\triangle).$$

2. On the integral conformality condition for $S_2^0(\triangle)$

Let $v_0^{(i)} \in V_I(\Delta)$ and $s \in S_2^0(\Delta)$, according to above section, the integral conformality condition of s at $v_0^{(i)}$ is that

$$\sum_{j=2}^{d_i} \int_{l_1^{(i)}(y)}^{l_j^{(i)}(y)} q_j^{(i)}(x,y) [x - l_j^{(i)}(y)] dx \equiv 0$$

holds, where $q_j^{(i)} \in \prod_{2-0-1}$ is the smoothing cofactor of s from $T_{j-1}^{(i)}$ to $T_j^{(i)}$ across $e_j^{(i)}$. Setting $q_j^{(i)}(x,y) = \alpha_j^{(i)}x + \beta_j^{(i)}y + \gamma_j^{(i)}$, $j = 1, \dots, d_i$, and substituting them into the above identity, we have

$$\sum_{j=1}^{d_i} \alpha_j^{(i)} (l_j^{(i)}(y))^3 + 3 \sum_{j=1}^{d_i} (\beta_j^{(i)} y + \gamma_j^{(i)}) (l_j^{(i)}(y))^2 \equiv 0.$$
 (2.1)

Note that $l_j^{(i)}(y) = x_0^{(i)} + (y - y_0^{(i)})/k_j^{(i)}$, the equation (2.1) can be rewritten as a homogeneous system of linear equations. Indeed, equating the coefficients of the various powers of y to zero, we have

$$\begin{cases}
\sum_{j=1}^{d_{i}} \left[\alpha_{j}^{(i)}(k_{j}^{(i)})^{-3} + 3\beta_{j}^{(i)}(k_{j}^{(i)})^{-2}\right] = 0, \\
\sum_{j=1}^{d_{i}} \left[x_{0}^{(i)}\alpha_{j}^{(i)}(k_{j}^{(i)})^{-2} + (y_{0}^{(i)}\beta_{j}^{(i)} + \gamma_{j}^{(i)})(k_{j}^{(i)})^{-2} + 2x_{0}^{(i)}\beta_{j}^{(i)}(k_{j}^{(i)})^{-1}\right] = 0, \\
\sum_{j=1}^{d_{i}} \left[x_{0}^{(i)}\alpha_{j}^{(i)}(k_{j}^{(i)})^{-1} + x_{0}^{(i)}\beta_{j}^{(i)} + 2(y_{0}^{(i)}\beta_{j}^{(i)} + \gamma_{j}^{(i)}(k_{j}^{(i)})^{-1}\right] = 0, \\
\sum_{j=1}^{d_{i}} \left[(y_{0}^{(i)}\beta_{j}^{(i)} + \gamma_{j}^{(i)})\right] = 0.
\end{cases} (2.2)$$

Since $s \in S_2^0(\triangle)$, s must satisfy the conformality condition:

$$\sum_{j=1}^{d_i} q_j^{(i)}(x,y)[x-l_j^{(i)}(y)] \equiv 0,$$

that is,

$$\begin{cases} \sum_{j=1}^{d_i} \alpha_j^{(i)} = 0, \\ \sum_{j=1}^{d_i} \beta_j^{(i)} (k_j^{(i)})^{-1} = 0, \\ \sum_{j=1}^{d_i} [y_0^{(i)} \alpha_j^{(i)} (k_j^{(i)})^{-1} + \gamma_j^{(i)}] = 0, \\ \sum_{j=1}^{d_i} [x_0^{(i)} \beta_j^{(i)} + \gamma_j^{(i)} (k_j^{(i)})^{-1}] = 0, \\ \sum_{j=1}^{d_i} [x_0^{(i)} \gamma_j^{(i)} - y_0^{(i)} \gamma_j^{(i)} (k_j^{(i)})^{-1}] = 0. \end{cases}$$

By putting these relations into (2.2), we see that the last two equations in (2.2) are actually

identities, so they are redundant. While the remainder two equations can be rewritten as

$$\begin{cases}
\sum_{j=1}^{d_{i}} \left[\alpha_{j}^{(i)}(k_{j}^{(i)})^{-3} + 3\beta_{j}^{(i)}(k_{j}^{(i)})^{-2}\right] = 0, \\
\sum_{j=1}^{d_{i}} \left[x_{0}^{(i)}\alpha_{j}^{(i)}(k_{j}^{(i)})^{-2} + (y_{0}^{(i)}\beta_{j}^{(i)} + \gamma_{j}^{(i)})(k_{j}^{(i)})^{-2}\right] = 0.
\end{cases} (2.3)$$

Let

$$s|_{T_i^{(i)}} = a_j^{(i)} x^2 + b_j^{(i)} xy + c_j^{(i)} y^2 + d_j^{(i)} x + e_j^{(i)} y + f_j^{(i)}.$$
 (2.4)

Then it follows from (1.2) that

$$\begin{cases}
\alpha_{j}^{(i)} = \nabla a_{j}^{(i)}, \\
\beta_{j}^{(i)} = \nabla b_{j}^{(i)} + \nabla a_{j}^{(i)} \cdot (k_{j}^{(i)})^{-1}, \\
\gamma_{j}^{(i)} = \nabla a_{j}^{(i)} \cdot x_{0}^{(i)} - \nabla a_{j}^{(i)} \cdot (k_{j}^{(i)})^{-1} y_{0}^{(i)} + \nabla d_{j}^{(i)}.
\end{cases} (2.5)$$

Combining (2.3) and (2.5) yields

$$\begin{cases}
\sum_{j=1}^{d_{i}} \left[4a_{j}^{(i)} \cdot \triangle(k_{j}^{(i)})^{-3} + 3b_{j}^{(i)} \cdot \triangle(k_{j}^{(i)})^{-2}\right] = 0, \\
\sum_{j=1}^{d_{i}} \left[2a_{j}^{(i)}x_{0}^{(i)} + b_{j}^{(i)}y_{0}^{(i)} + d_{j}^{(i)}\right] \cdot \triangle(k_{j}^{(i)})^{-2} = 0,
\end{cases} (2.6)$$

where \triangle (∇) are the forward (backward) differencing operators with respect to j, respectively.

To simplify (2.6) further, we need the well-known B-net technique^[4]. For $s \in S_2^0(\triangle)$ and $T_j^{(i)} \in \cup(v_0^{(i)})$, denote

$$\begin{cases} s_j^{(i)} := s(v_j^{(i)}), & j = 0, 1, \dots, d_i, \\ p_j^{(i)} := s((v_0^{(i)} + v_j^{(i)})/2) - s_0^{(i)}/2 - s_j^{(i)}/2, & j = 1, \dots, d_i, \\ g_j^{(i)} := s((v_j^{(i)} + v_{j+1}^{(i)})/2) - s_j^{(i)}/2 - s_{j+1}^{(i)}/2, & j = 1, \dots, d_i. \end{cases}$$

 $s_0^{(i)}, s_j^{(i)}, s_{j+1}^{(i)}, p_j^{(i)}, p_{j+1}^{(i)}$ and $g_j^{(i)}$ are called the *B*-net ordinates of *s* with respect to $T_j^{(i)}$, where $j + 1 \mod(d_i)$. By means of these *B*-net ordinates, the restriction of *s* on $T_j^{(i)}$ can be expressed as

$$s|_{T_{j}^{(i)}} = s_{0}^{(i)} \frac{2!}{2!0!0!} [\lambda_{0}^{(i)}]^{2} + s_{j}^{(i)} \frac{2!}{0!2!0!} [\lambda_{j}^{(i)}]^{2} + s_{j+1}^{(i)} \frac{2!}{0!0!2!} [\lambda_{j+1}^{(i)}]^{2} + p_{j+1}^{(i)} \frac{2!}{1!1!0!} \lambda_{0}^{(i)} \lambda_{j+1}^{(i)} + p_{j+1}^{(i)} \frac{2!}{1!0!1!} \lambda_{0}^{(i)} \lambda_{j+1}^{(i)} + g_{j}^{(i)} \frac{2!}{0!1!1!} \lambda_{j}^{(i)} \lambda_{j+1}^{(i)},$$

$$(2.7)$$

where $\lambda_0^{(i)}, \lambda_j^{(i)}, \lambda_{j+1}^{(i)}$ are the barycentric coordinates of v = (x, y) and are defined by

$$\lambda_t^{(i)} := D_t^{[i,j]}/D^{[i,j]}, \quad t = 0, j, j+1,$$

where

$$D^{[i,j]} := \text{area}[v_0^{(i)}, v_j^{(i)}, v_{j+1}^{(i)}] := \frac{1}{2!} \begin{vmatrix} 1 & \boldsymbol{x}_0^{(i)} & \boldsymbol{y}_0^{(i)} \\ 1 & \boldsymbol{x}_j^{(i)} & \boldsymbol{y}_j^{(i)} \\ 1 & \boldsymbol{x}_{j+1}^{(i)} & \boldsymbol{y}_{j+1}^{(i)} \end{vmatrix}$$

while $D_t^{[i,j]}$ is the resulting determination by substituing the point $v_t^{(i)}$ with v=(x,y) in

From (2.4) and (2.7), we have

$$\begin{aligned} &2a_{j}^{(i)}x_{0}^{(i)}+b_{j}^{(i)}y_{0}^{(i)}+d_{j}^{(i)}=\frac{\partial s}{\partial x}\big|_{(x_{0}^{(i)},y_{0}^{(i)})}\\ &=2[s_{0}^{(i)}(y_{j}^{(i)}-y_{j+1}^{(i)})+p_{j}^{(i)}(y_{j+1}^{(i)}-y_{0}^{(i)})+p_{j+1}^{(i)}(y_{0}^{(i)}-y_{j}^{(i)})]/D^{[i,j]}. \end{aligned}$$

From which and $D^{[i,j]} = -\frac{1}{2}(y_i^{(i)} - y_0^{(i)})(y_{i+1}^{(i)} - y_0^{(i)}) \triangle (k_i^{(i)})^{-1}$, the second equation in (2.6) can be simplified as

$$\sum_{j=1}^{d_i} \omega_j^{(i)} [p_j^{(i)} - s_0^{(i)}] = 0, \qquad (2.8)$$

where $\omega_j^{(i)} := [(k_{j+1}^{(i)})^{-1} - (k_{j-1}^{(i)})^{-1}]/(y_j^{(i)} - y_0^{(i)})$. Similarly, it is not difficult to simplify the first equation in (2.6) as

$$\sum_{i=1}^{d_i} \left[\mu_j^{(i)} (s_j^{(i)} + s_0^{(i)} - 2p_j^{(i)}) + \sigma_j^{(i)} (g_j^{(i)} - p_j^{(i)} - p_{j+1}^{(i)} + s_0^{(i)}) \right] = 0, \tag{2.9}$$

where $\mu_j^{(i)} := [(k_{j+1}^{(i)})^{-1} - (k_{j-1}^{(i)})^{-1}]/(y_j^{(i)} - y_0^{(i)})^2$ and $\sigma_j^{(i)} := [(k_{j+1}^{(i)})^{-1} - (k_j^{(i)})^{-1}]/[(y_j^{(i)} - y_0^{(i)})^2]$ $y_0^{(i)})(y_{i+1}^{(i)}-y_0^{(i)})].$

Therefore, we have inferred that, for $s \in S_2^0(\Delta)$, s satisfies the integral conformality condition at the vertex $v_0^{(i)}$ if and only if (2.8) and (2.9) hold.

3. The stratified triangulation

For $v_0^{(i)} \in V_I(\triangle)$, if $d_i = 4$ and $k_j^{(i)} = k_{j+2}^{(i)}$, j = 1, 2, then $v_0^{(i)}$ is called a singular vertex of \triangle , and the set of all the singular vertices of \triangle is denoted by $V_S(\triangle)$.

Let $v \in V(\Delta)$ and $V^* \subset V(\Delta)$, v and V^* are said to be adjacent if there exists some $u \in V^*$ such that u and v are adjacent. The set of the vertices in \triangle which are adjacent to V^* is denoted by $B(V^*)$. If $V^* = \{v\}, B(V^*)$ will be written in simplified form B(v). It is clear that $B(V^*) = \bigcup_{v \in V^*} V_B(\bigcup(v))$ and $B(v) = V_B(\bigcup(v))$.

In view of the convenience of description, we need a few concepts and symbols in the theory of graphs. It is clear that the vertices and edges of the triangulation \triangle form a connected planar graph, which will be denoted by G.

Definition 1 G' is called a qusi-circuit in G if G' is a connected subgraph of graph Gsuch that

1) E(G') contains a unique circuit, denoted by C;

- 2) $|V_I(G')| = 0$ and $|E_I(G')| = 0$;
- 3) if $v \in V(G') \setminus V(C)$, then $|B(v) \cap V(C)| = 0$ or 1.

Clearly a circuit in G must be a quasi-circuit in G. In what follows, we will denote a quasi-circuit by C_q , and call the unique circuit C contained in C_q the base circuit of C_q .

Definition 2 For $v_0^{(i)} \in V_I(\triangle) \setminus V_S(\triangle)$, if $v_j^{(i)} \in V_B(\cup(v_0^{(i)}))$ such that $k_{j-1}^{(i)} \neq k_{j+1}^{(i)}$, then $v_j^{(i)}$ is called a companion vertex of $v_0^{(i)}$. For $v_0^{(i)} \in V_S(\triangle)$, any $v_j^{(i)} \in V_B(\cup(v_0^{(i)}))$ is also called a companion vertex of $v_0^{(i)}$.

Definition 3 Let V_1 and V_2 be two subsets of $V(\triangle)$ with the same cardinality n. V_2 is called a companion set of V_1 provided that all the vertices of V_1 and V_2 can be numbered as u_1, \dots, u_n and v_1, \dots, v_n , respectively, such that

- i) for $t = 1, \dots, n, v_t$ is a companion vertex of u_t ;
- ii) if n > 1 then, for $t = 2, \dots, n, v_{t-1} \notin \bigcup_{j=t}^{n} V_{B}(\bigcup(u_{j}))$.

In addition, the collection of all the companion sets of V_1 is denoted by $\Theta(V_1)$.

To characterize the companion set more conveniently, here we introduce the notion of "companion matrix". Let $V_1 = \{u_1, \dots, u_m\}$ and $V_2 = \{v_1, \dots, v_n\} (n \ge m)$ be two subsets of $V(\Delta)$. The companion matrix $K(V_1; V_2) = (k_{ij})$ is an $m \times n$ matrix defined as follows:

$$k_{ij} = \left\{ egin{array}{ll} 0, & ext{if } v_j
otin V_B(\cup(u_i)), \\ 1, & ext{if } v_j ext{ is a companion vertex of } u_i, \\ -1, & ext{otherwise.} \end{array}
ight.$$

Proposition 1 Let $V_1, V_2 \subseteq V(\triangle)$ with $|V_1| = n$ and $|V_2| = m, m \ge n$. A necessary and sufficient condition for $\Xi(V_2) \cap \Theta(V_1) \neq \emptyset$ is that, there exists at least one $n \times n$ submatrix of $K(V_1; V_2)$ which, by exchanging the rows and columns, respectively, can be transformed into a upper triangular matrix with all the entries on main diagonal being 1, where $\Xi(V_2)$ is the collection of all the subset of V_2 .

We now give the definition of stratified triangulation.

Definition 4 Let G be the graph consitting of the vertices and edges of a triangulation \triangle of Ω . Set

$$egin{aligned} V_B^0(\triangle) &:= V_B(\triangle), \ V_B^i(\triangle) &:= (V_I(\triangle) \cap B(V_B^{i-1}(\triangle))) \setminus \cup_{j=0}^{i-1} V_B^j(\triangle), \quad i = 1, 2, \cdots. \end{aligned}$$

△ is called a stratified triangulation with N layers if the following conditions are satisfied:

- i) $V_I(\triangle) = \bigcup_{i=1}^N V_B^i(\triangle);$
- ii) for $i=1,\dots,N-1$, there exists a quasi-circuit $C_q^i\subseteq G$ with the base circuit C_i such that $V_B^i(\triangle)=V(C_q^i)$, and for $i=1,\dots,N,V_B^i(\triangle)\subset \mathrm{int}C_{i-1}$, where $C_0=\partial\Omega$;
 - iii) for $i = 1, \dots, N, \Xi(V(C_{i-1})) \cap \Theta(V_B^i(\triangle)) \neq \emptyset$.

For example, the triangulation in Fig.2 is a stratified triangulation with three layers, where the two quasi-circuits C_q^i , i=1,2, are drawn with thich lines, and the path on which the vertices of $V_B^3(\triangle)$ lie is also drawn with thich line. In addition, all the vertices of the

companion sets of $V_B^1(\triangle)$ and $V_B^3(\triangle)$ are labeled as $u_t^{(i)}$, $i=1,3,t=1,\cdots,\tau_i$, respectively, with $\tau_1=12$ and $\tau_3=3$.

4. The dimension of $S_3^1(\triangle)$

Let \triangle be a stratified triangulation with N layers and G be the graph consisting of the vertices and edges of \triangle . We denote the cardinalities of $V(\triangle), V_I(\triangle), V_S(\triangle)$ and $E(\triangle)$ by α, β, γ and ρ , respectively.

Since the case of $\beta = 1$ and the case that \triangle contains flats as its triangles had been discussed in [1], we may assume that $\beta > 1$ and \triangle contains no flat.

According to definition 4, $V_I(\triangle) = \bigcup_{i=1}^N V_B^i(\triangle)$ and for $i=1,\cdots,N,\Xi(V(C_{i-1}))\cap\Theta(V_B^i(\triangle))\neq\emptyset$, where C_i is the base circuit of C_q^i . Hence, if we let $V_B^i(\triangle)=\{z_1^{(i)},\cdots,z_{\tau_i}^{(i)}\}$, then there exists at least one subset of $V(C_{i-1})$, denoted by $\{w_i^{(i)},\cdots,w_{\tau_i}^{(i)}\}$, such that $\{w_1^{(i)},\cdots,w_{\tau_i}^{(i)}\}$ is a companion set of $V_B^i(\triangle)$. Clearly, without loss of generality, we can assume that the companion matrix $K(\{z_1^{(i)},\cdots,z_{\tau_i}^{(i)}\}:(w_1^{(i)},\cdots,w_{\tau_i}^{(i)}\})$ is a upper triangular matrix with $k_{tt}=1,t=1,\cdots,\tau_i$.

We now renumber the vertices in $V_I(\triangle)$ and still denote them by $v^{(i)}$ or $v_0^{(i)}$, $i = 1, \dots, \beta$, but provided that the following one-to-one correspondence holds

where $\theta_j = \sum_{k=1}^j \tau_k, j = 1, \dots, N$, and $\theta_N = \beta$. Hence $V_I(\Delta) = (v^{(1)}, \dots, v^{(\beta)}) = \{v_0^{(1)}, \dots, v_0^{(\beta)}\}$. Similarly, we renumber $\{w_1^{(1)}, \dots, w_{\tau_1}^{(1)}; \dots; w_1^{(N)}, \dots, w_{\tau_N}^{(N)}\}$ as $\{w_1, \dots, w_{\beta}\}$. Then the companion matrix $K(\{v^{(1)}, \dots, v^{(\beta)}\}; \{w_1, \dots, w_{\beta}\})$ is a upper triangular matrix with $k_{ii} = 1, i = 1, \dots, \beta$.

From (2.8) and (2.9), we have that a necessary and sufficient condition for $s \in \hat{S}_2^0(\triangle)$ is that $s \in S_2^0(\triangle)$ and all the free parameters $s_j^{(i)}$, $i = 1, \dots, \beta, j = 0, 1, \dots, d_i$, $p_j^{(i)}$ and $g_j^{(i)}$, $i = 1, \dots, \beta, j = 1, \dots, d_i$ (for the reason of overlapping, the total number of them is actually $\alpha + \rho$) of $S_2^0(\triangle)$ must satisfy the linear system:

$$\begin{cases} \sum_{j=1}^{d_{i}} [\mu_{j}^{(i)}(s_{j}^{(i)} + s_{0}^{(i)} - 2p_{j}^{(i)}) + \sigma_{j}^{(i)}(g_{j}^{(i)} - p_{j}^{(i)} - p_{j+1}^{(i)} + s_{0}^{(i)})] = 0, & i = 1, \dots, \beta, \\ \sum_{j=1}^{d_{i}} \omega_{j}^{(i)}[p_{j}^{(i)} - s_{0}^{(i)}] = 0, & i = 1, \dots, \beta. \end{cases}$$

$$(4.1)$$

Note that $v_1^{(i)} = w_i$ is a companion vertex of $v_0^{(i)}$, hence, when $v_0^{(i)} \in V_I(\triangle) \setminus V_S(\triangle)$, the coefficient $\mu_1^{(i)}$ of term $s_1^{(i)}$ in the (2i-1)-th equation and the coefficient $\omega_1^{(i)}$ of term $p_1^{(i)}$ in the 2i-th equation of (4.1) are nonzero; when $v_0^{(i)} \in V_S(\triangle)$, the 2i-th equation of (4.1) is actually an identity and the (2i-1)-th equation can be rewritten as

$$\sum_{j=1}^{4} \sigma_{j}^{(i)} [g_{j}^{(i)} - p_{j}^{(i)} - p_{j+1}^{(i)} + s_{0}^{(i)}] = 0,$$

in which, the coefficient $\sigma_1^{(i)}$ of term $g_1^{(i)}$ is also nonzero. Since $K(\{v^{(1)},\cdots,v^{(\beta)}\};\{w_1,\cdots,w_{\beta}\})$ is a upper triangular matrix with $k_{tt}=1,t=1$ $1, \dots, \beta$, and $v_1^{(t)} = w_t$ is a companion vertex of $v^{(t)}$, hence, it follows from definition 3 that

$$v_1^{(t)} \notin \bigcup_{j=t+1}^{\beta} V(\cup(v^{(j)})), \quad t = 1, \dots, \beta - 1, \\ e_1^{(t)} \notin \bigcup_{j=t+1}^{\beta} E(\cup(v^{(j)})), \quad t = 1, \dots, \beta - 1,$$

and

$$v_1^{(t)}v_2^{(t)} \notin \bigcup_{i=t+1}^{\beta} E(\cup(v^{(j)})), \quad t=1,\cdots,\beta-1.$$

That is to say, $s_1^{(t)}$, $p_1^{(t)}$ and $g_1^{(t)}$ will not apper in any equation in (4.1) for $i = t + 1, \dots, \beta$. Hence, (4.1) can be rewritten as

$$AX = 0, (4.2)$$

where $X = (x_1, x_2, \cdots, x_{2\beta-1}, x_{2\beta}; x_{2\beta+1}, \cdots, x_{\alpha+\rho})^T$ provided that, for $i = 1, \cdots, \beta$, if $v^{(i)} \in V_I(\triangle) \setminus V_S(\triangle)$ then $x_{2i-1} = s_1^{(i)}$ and $x_{2i} = p_1^{(i)}$ else (i.e., $v^{(i)} \in V_S(\triangle)) x_{2i-1} = s_1^{(i)}$ and $x_{2i} = g_1^{(i)}$. While $x_j, j = 2\beta + 1, \dots, \alpha + \rho$ are the remainder $\alpha + \rho - 2\beta$ B-net ordinates of s(x, y) on \triangle , which can be arranged in free order. And

$$A = (H, Q),$$

where Q is an $(2\beta) \times (\alpha + \rho - 2\beta)$ matrix and H is an $2\beta \times 2\beta$ matrix of the form

with $F_j(j=1,\cdots,N-1)$ and $G_j(j=1,\cdots,N-2)$ being $2\tau_j \times 2\tau_{j+1}$ and $2\tau_j \times 2\tau_{j+2}$ blocks, respectively, and for $j = 0, 1, \dots, N - 1$,

with L_{j+1} being an $(\tau_{j+1}-2)\times(\tau_{j+1}-2)$ upper triangular block, and for $i=1,\cdots,\beta$, if $v^{(i)} \in V_I(\triangle) \backslash V_S(\triangle)$ then

$$w_i = \mu_1^{(i)}, \quad w_i' = -2\mu_1^{(i)} - \sigma_1^{(i)} - \sigma_{d_i}^{(i)}, \quad z_i = \omega_1^{(i)},$$

else (i.e.,
$$v^{(i)} \in V_S(\triangle)$$
)

$$w_i = 0, \quad z_i = 0, \quad w_i' = \sigma_1^{(i)},$$

and in the later case (i.e., $v^{(i)} \in V_S(\triangle)$), all the elements in the 2i-th row of matrix A equal null since 2i-th equation in (4.1) is in fact an identity.

Hence, we can see easily that the coefficient matrix A in (4.2) can be transformed into an echelon matrix by exchanging its rows, and the rank of A is $2\beta - \gamma$. Therefore we have

$$\dim \hat{S}_2^0(\triangle) = \dim S_2^0(\triangle) - \operatorname{rank}(A) = \alpha + \rho - (2\beta - \gamma).$$

Which together with theorem 2 gives the following main result.

Theorem 3 Let Ω be a simply connected polygonal region in \mathbb{R}^2 and \triangle be a triangulation of Ω . If (Ω, \triangle) is type-X and \triangle is a stratified triangulation, then

$$\dim S_3^1(\triangle) = \alpha + \rho - 2\beta + \gamma + 4.$$

Acknowledgment The author is grateful to the referee for his valuable suggestions on the original version of this paper.

References

- [1] L.L.Schumaker, On the dimension of spaces of piecewise polynomials in two variables, Multivariate Approximation Theory, Birkhauser, Basel, 1979, 396-412.
- [2] C.K.Chui and Wang Renhong, Multivariate spline spaces, J. Math. Anal. Appl., 94(1983), 197–221.
- [3] Liu Huanwen, An integral representation of bivariate splines and the dimension of quadratic spline spaces over stratified triangulation, Acta Math. Sinica, Vol.37, No.4(1994), 534-543.
- [4] G.Farin, Bezier polynomial over triangles and the construction of piecewise C^r polynomials, TR/91, Brund Univ., 1980.

一类分层三角剖分下三次样条空间的维数

刘 焕 文 (广西民族学院数学系, 南宁 530006)

摘要

本文定义了平面单连通多边形域的一类较任意的三角剖分—— 分层三角剖分,并通过分析二元样条的积分协调条件,确定了分层三角剖分下三次 C^1 样条函数空间的维数