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Abstract In this puper, some conclusions are discussed for the categories with terminal
abjects, such as sonie results under conditions satisfied Axiown (P) and Axiown {U), and
some propositions on muage aud inverse hage are discussed and proved also.
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0. Introduction

The category C — ¢”, which is defined in [1] for describing a changing process of a
system, possesses a terminal object and has finite products. There are many categories
with terminal objects which relate to abelian category in varying degrees, such as Set (the
category of sets}, P/X (the category of presheaves of sets on a topological space X), §/X
(the category of sheaves of sets) and Toposes. We observe that the additive operation in
an abelian category creates a null object. Can we find, within the scope of HAA, anything
substantially independent of null objects and extend it to some categories with terminal
objects? Where HAA means homological algebra in abelian categories.

Since an abelian group is a {0, —, +}-algebra (see [2]), can we establish an approach to
HAA for the category [2-Alg with Q a family of operations? Moreover, since the category
AG of abelian groups is a special one of the categories AG,, of commutative n-groups,
AG = AG,,, can we put forward a united theory which is HAA when n = 27 Both Q-Alg
and AG, (n > 2) have terminal objects.

To answer the above metioned problems, we defined the yuasikernels for the Ldtegoneb

with terminal objects as follows (see [3]):
- ¥

Let F' be a terminal cbject. If the diagram .: 1+ is a pullback, then the morphism
1
u is called a {teminal) quasikernel of f and A is called a lateral of u. We write QKT (f)

for the class of all quasikernels of f (It its also vs-ful to the next paper).
A terminal object F is called to be quasinull, ./ Jor any object A the morphism ¢ : A —
F is epi.
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~ In this paper, the symbols are the same as those in [4], F always denotes a terminal

object. 1is an identity morplism, -+ denotes a monic, —» denotes a regular epi {i.e., it is a

coequalizer of some pair of morphisms). If v is monic, {u} denotes the class {v|codom(v) =

codom(u) and v = u}. The composite of by a is denoted as ba,(b)a, or &- (a), but b{a)

denotes the image of @ by b {see [5]}. If there is no danger of confusion. u is used to

replace (u), and we write (A, B) for the class of all the morphisms from A to B. The
&

symbol (a,b; ¢, d) means the diagram ff._: ;’b . It is often convenient that a subobject of a
object A is called the subobject of a mordphism f:A—- B.
§1. Axioms and Lemmas

A category is called to be quasireqular, if it satisfies the following

Axiom (QR) Every morphism o : A — B can be written as a composition 4 —» C > B;

moreover far every diagram of the form ) > « there is a pullback diagram which is of the

»
form .< >. .

A cate-gory is called to be weak regular, if it only satisfies the second part of the axiom
(QR) (see [6, Axiom (EX1)]).
In the category AG of abelian groups, for any pair (f,g) of morphisms such that
b

a— .T s , there is a pullback Eﬁi s . In the proof of this proposition we used the fact
; —

!
Im(f) N Im(g) # 8. In this category Im(f) N Im(g) # @ is equivalent to that there is a

—

commutative diagram |_|¢ , so we can replace the above fact by the following axiom:
!

Axiom (P) If there is a commutative diagram -i:gg with g a monic, then there is a

7

b
—

lLg .«
»

pu]lb ack «

|
L =Y
In Set and many categories based upon sets, the following axiom is a basic fact:

Axiom (U) If f: A — B is a regular epi and a; is a subobject of B, € T, such that
Upa; = (1), then OpfYa;) = {1}.

The meaning of U will be shown below.

Axiom (U} is abstracted from the definition of a map in Set, let f : A — B, then f(a)
takes sense for each a € A.

A regular epi is called to be {U})-epi, if for it Axiom (U) holds; A category is called a
(U)-category, if every regular epi in it is (U)-epi; For a quasiregular category, a morphism f
is called a (U)-morphism, if the regular epi e, which is in the regular factorization f = me,
is (U)-epi.

A category is called a (P)-category, if for it Axiom(P) holds.

We are going further into the meanings of Axiom(U) and Axiom(P) in §2.

For a category based upon sets, it is easy to demonstrate the following fact:

— 498 —



If every inclusion is a morphism of the category, then when A; C A is a subset of the
ohject A and an object of the category, i € T,UrA; = A & UrA; is an object of the
category and Urls, = {14). Where UrA; is a set union, Urls, is a morphism union,
where I, : A; — A is the inclusion.

The above fact is useful when we research into the relation between U4; = A and
UIs, = {14}, and the relation is used when we wonder whether a category subject to
Axiom(U),

There are many important categories which are {(P) (U)-quasiregular categories with
terminal objects. such as Set, P/X, 5/X, Top(I) (see [7]), some subcategories of C — ¢’.

There are many (P) (U)-quasiregular categories with guasinull terminal objects, such
as all the above mentioned categories but Top(I).

The conormalness plays an important role in HAA, in the present case, first of all, we
have to make the quasi-conormalness clear,

Definition For a category with a terminal object F,aepi f: A — Biscalled a (termin‘aJ)
coquasikernel with any lateral, if for every h € (F, B) there is a morphism w such that the
s— F
diagram =! | ® is a pushout.
1
There is no difficulty to prove that AG, and gM'(n > 2) are (P)-regular categories
with quasinull terminal objects and subject to the following axiom:

Axiom (CQN) Ewvery regular epi is a (terminal) coguasikernel with any lateral.
For AG,  (see [8]) if there is a diagram _. f with f an epi, then fis a coquasikernel;
!

An epi in M} is always a (terminal) coquasikernel of a morphism, because (F, M) # 8
for any M € obrM} (see [9)).

B.Mitchell’s union of a family {ai}icr of subobjects als is denoted by Ura; (see [5,
p-11)).  a; < a, and if when a; is carried into k by 1, a is also carried into & by 1, then we
call a a weak-union of {a;}. Clearly, if it exists, then it is unique up to an isomorphism,
and we write Ura; for it. Obviously, if Ua; exists, then Ug; exists and Oa; = Ua;.

Lemuna 1.1 If A is a quasiregular category satisfying Axiom(P), then A satisfies the
following condition: For any commutative diagram (a,b;c,d), there exists a pullback

(a,b; ¢, d').

Lermina 1.2 For any category with a terminal object, a quasikernel is an h-lateral quagsik-
ernel of its h-lateral coquasikernel and an h-lateral coquasikernel is an h-lateral coquasik-
ernel of its h-lateral quasikernel.

Lemma 1.3 For a (P)-category, Ua; = Ua; when Ja; exists.

Proof Suppose a; is carried into a monic h by f. Then there is a pullback (f, h;m,n)
by Axiom(P), so that for each a; there is a unique #; such that mt; = a;, hence g; is
carried into m by 1. Therefore, there is morphism ¢ such that mt = Ug;. We have
h(nt) = (hn)t = (fm)t = f-(mt) = f-(0a;), this means that Ja; is also carried into A’
by £, so that Ua; = Ug;. O
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Lemma 1.4 For any category A,Ua; = {1) < every a; is carried info h by 1 implies that
h is an isomorphism.

Lemma 1.5 For any category, if Ja; exists and (Ja;)t; = a;, then Uf; = (1).

Proof At first, we demonstrate that if ¢; is carried into k by Ua; then Ua; is carried into
h by 1. In fact, ¢; is carried into k& by Us; implies that there is a morphism m; such that
hm; = (Ua;)t;. Hence hrn; = q;, this means that a; is carried into & by 1, so that Oa; is
also carried into A by 1.

Suppose t; is carried into k by 1, that is, there is a morphism s; such that hs; = ¢;.
Hence (Ua,)¢; = (Ua;)hs;, that is, ¢; is carried into (Ja;)h by Ua;. By the above statement,
Ug; is carried into (Ja;)k by 1, so there is a morphism m such that ((Ja;)k)m = Ua; =
(Ua,)l On the other hand, & and Ua; are monic, so that the diagram (Oa;, (Dai)h; k, 1)
is a pullback. Hence there is s unique a such that hs = 1, hence k is a monic retraction
and so that % is an isomorphism. Therefore O¢; = {1} by Lemma 1.4, O

§2. Images and inverse images

Proposition 2.1 For a quasiregular category, if Im(f) = (¢) and u < ¢, then f~(u)
exists.

Proof f has a regular factorization f = te with e regular epi and  monic. Since u < t,
there is a monic s such that £s = u and so that the diagram (t,u;s,1) is a pullback.
Further, Axiom(QR) tells us there is a pullback (e,s;a,b). Hence we have a pullback
(te,u; a,18) and so that {a) = f~(u).

Proposition 2.2 For any category, if {u; };e7 is a family of subobjects u;s of f, and if
Urug, f(Uru;) and f(u;) exists, then Uy f(u;) = flUrw).

Proof The proof is a discussion on the following diagram.

Since f(u;) and f(Uu;) exist, there exist commutative diagrams (f, f(u:); %, s:).and
{(f, f(Uu;) U uys). By the definition of unions, we have a morphism £; with (Uw; )t = u,
so holds that f(Uw;) - (st;} = (f - (Uui))t; = Fu;. So that, by the definition of images we
have a unique d; such that f(Uu;)d; = f(u;) and hence f(Uw) > flu:).

Suppose f(u;) is carried into h by 1, i.e., he; = f(u;), then we have h-(e;5;) = fui)si =
fu;, so that u; is carried into h by f, hence Uy is also carried into k by f and so that
there is a morphism ¢ such that At = f-(Uw;). Because h is monic, the definition of images
tells us that there is a unique e such that he = f{Uz;), this means that f(Uw;) is carried
into k by 1 also, and hence f{Uw;) = Uf{w;). O
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Proposition 2.3 For any category, if e; is a subobject of a monic f,i € T, and if Ua;
exists, then Uf(a;) = f(Ua;).

Proof In any category the image of 2 monic is the monic itself, so that fa; = f(a;).
Suppose f(a;) is carried into h by g, that is, there is a morphism s; such that hs; = gf(a;)
and hence hs; = (9f)a;, so that a; is carried into & by gf.U q; is carried into A by gf also,
so that there is a morphism s such that hs = (gf)Ua;. We have (gf)Ue; = ¢-(fUa;) =
¢f(Ua;), hence g f(Ua;) = hs and so that f(tJa;} is carried into k by g. On the other hand,
by the definition of unions there is a morphism t; such that (Ua;)t; = a; for each j. To
remark that £; is monie, we have f(a;) = f{(Ua;)t;) = f - ((Uas)t;} = f(Uas)t;, so that
Fla;) € f{Ua;). We have proved f{Ug;) = Uf(a;). O

Proposition 2.4 For any category, if Im(f) = {t}, and if t Nu and f~*{t N u) exist, then
fHENnu) = fH(w).

Proof The proof can be completed by discussing the following diagram:
e ___‘-—M,h

b
"W}
44
_—_— .
. tu u
“Ltrw)
b [4

There is a morphism = such that f = ¢r, for ¢ is the image of f. Since ¢ N u exists,
there is a pullback (t,u; a,b) with tNu = ub = ta.f~1(t N u) exists, i.c., there is a pullback
(F,¢ 0w f7H{t Nu),¢). Hence we have ff~H{tNu) = (tNu)e = (ub)c = u(bc) If there
are two morphisms ! and m such that fl = um, then t(rl) = fl = um, so since (t,u;a,b)

"is a pullback, we have a unique s such that as = r! and bs = m, and hence (ta)s = (tr)l,
so that (£ Nu)s = FI. Since (f,t N u; f~1{¢ N u),¢) is a pullback, we have a unique d
such that ¢d = s and f~}(t N u)d = I, and hence (bc}d = b(ed) = bs = m. To remark

Fitnu)is momc we have proved the diagram (f,u; f~(t (1 u), be) i¢ a pullback. Hence

Ftnw) = £3(w). O

Proposition 2.5 For any category, if f is monic, then f~1(0w;) = 0f " (w;) when O,
exists and u; < f.

Proof We complete the proof by discussing the following diagram:

Since u; < f, there is a morphism a; such that u; = fa;. We may check that the
diagram (f,u;; a;,1) is a pullback, so that {a;}) = FYu;). If a; is carried into h by 1, i.e.,
there is a monic e; such that a; = he;. Let h = fh then we have a pullback (£, k; A ,1) and
he, fhe; = fa., = uj, hence u; is carried into h by 1, so that Ju; is carried into A by 1
also, so we have a monic s such that s = Uu;. Since u; < f, we have Ju; < f and hence
there is a monic e such that fe = Ju,, so that we have a pullback { f, Uu;; e, m) with m = 1.
Now we have % - (sm) = (Ou;)m = fe, so since (f,h;h,1) is a pullback, we have a unique
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¢ such that ht = e, and hence e is carried into A by 1. On the other hand, there is a monic
b; such that u; = (Uu;)b;, so that (Ow;)(b;1) = fa;, so since (f,0u;; €,m) is a pullback,
we have a unique d; such that ed; = a; and hence a; < e, so that {e) = Ug;. To observe
that (f,0u;;e,m) and (f,u;;a;,1) are pullbacks, we have proved (e) = FH0u) F ().

Since a morphism in a quasiregular category always has a regular factorization, this
proposition shows why we mentioned merely epimorphisms as a condition in Axiom(U)
when we hope to decide the property that f~! preserves all existing unions in a quasiregular
category (refer to proposions 2.7-2.8, and carefully see the proof of Proposition 2.8).

Proposition 2.6 For any category, if f is monic, that f~1(U(f N w)) = Of (u;) when
F iy and G(f Nw,) exist.
This is a corollary of Proposition 2.4 and Proposition 2.5.

Proposition 2.7 If 4 is a (P)-weak regular category, then A satisfies Axiom(U)« for
every regular epi f,Uf~Y(h;) = f~X{Uf;) when Uh; exists.

Proof (=) We discuss the diagram

Since f is regular epi, from the second part of Axiom{QR)} we know there are two
pullbacks (f, h;; u;j,e;) with e; regular epi and (f.0hk;;u,€) with e regular epi, so that
(u) = f71(Ok;) and {u;) = f~'(h;). Let n; be a monic such that (OkIn; = h;, then
(Gh)-(nje;) = fuj, sosince (f,0k; : u,e) is a pullback, there is a monic t; such that ut; =
u; and et; = n;e;, hence the diagram (e, n,;t5,e;) commutes, If there are two morphisms
@ and b such that nja = eb, then we have f - (ub) = {fu)b = ((Uk:)e) = (Uhi}nja = hja,
so since (f,h;;u;, €;} is a pullback, there is a unique v; such that w;v; = ub and ejv; = a.
Because we have shown ut; = u;, now we have w;v; = ut;v;, and hence ub = ut;v;. Since
© is. monic, we have b = ¢;0;, From both e;v; = a and b = t;v;, and since t; is monic, we
know (e,n;;t;,¢;) is a pullback, so that (t;) = e~ (n;). On the other hand, by Lemma
1.5, we have Un; = (1), so since e is regular epi, Axiom(U) tells us Je~(n;) = (t; = (1),
Moreover, by Lemma 1.3, we have Uf; = {1). Since u is monic, Proposition 2.3 shows
Uu(t;) = u(UL;), hence it holds that Un; = Un(t;) = u(Ut;) = u(l) = (u), so that
U~ (h) = FY (k). '
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(<) Observe that f~1(1) = (1), the proof is obvious. G

Proposition 2.8 If A is a (P)-quasiregular category, then A satisfies Axiom(U)¢> for any
morphism f with Im(f) = (t), if ;N and U(1; Nt) exist then F~1(U(u; N)) = Uf~(u;).

Proof We can prove “only if" by discussing the diagram

Let f = te be a regular factorization of f. Since t N u; exists, we have a pullback
(t,wj;vi,€5), and {v;} = t~(u;). To observe e is regular epi, Axiom{QR) tells us there
is a pullback (e,v5;n;,¢;), and (n;) = e !(v;), and hence (f,uj;n;,et;) is a pullback
and (n;) = f~'(u;). Since U(t N w;) exists, by Corollary 2.6 we have £~}(U(¢ N 1)) =
Ut~(w;) = Uw;, that is, there is a pullback (¢, U(t N w;); Uvy, 8). Furthermore, Axiom(QR)
give us a pullback (e, Uz;; h, 2}, so that (k) = f~1(U(tN1;)) = e~ (Uv;). Thus, to observe
Proposition 2.7, we have f~1(U(t N w;)} = e }(Un;) = Ue™ (v;) = Un; = Uf~Y(u;). O

To review the above proofs carefully, we are convinced of that Axiom(P) has the
ability to replace the finite-completeness when the relevant commutative diagrams exist,
and many propositions, which people used to know to be true for the finitely complete
categories, are true for some (P)-categories, for example, the finite-completeness in [10,1.3]
can be replaced by Axiom(P) in many cases. It is interesting to compare the propositions
in this paragraph with the relevant propositions in [10,1.3 and TI).

If we regard AG as a special one of AG.,, then the finite-completeness of AG should

be a degenerate form of Axiom(P): for ore thing, in AG for any hlv there always
[}

exists a commutative diagram (f,¢;e,b), hence Axiom(P) says that we always have a
pullback (f,g;a’,¥'), in additon, AG has a null object, so that it is finitely camplete, for
another, when n > 2, AG,, satisfies Axiom(P), but it is not finitely complete, for may
be Im(f) NIm(g) = ¢ and so that there is no commutative diagram (f,g;—, -). Thus, -
we can say AG.,(n 2> 2) satisfies Axiom(P) and when n = 2 Axiom(P) degenerate into
finite-completeness.

Since AG,, is an {l-algebra, we have that 2-alg is not finitely complete in general, but
it satisfies Axiom(P).
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