This is a contradiction Hence $V_n(x)$ is a neighbourhood of x. Thus X is a first countable space Since, a quasi-base is a K-network, from Theorem A (iii), we know that X is a Lasnev space, so X is metrizable

Corrllary 2 4 If X has a G-CF quasi-base, then the following statements are equivalent:

- (i)X is m etrizable.
- (ii)X is a L a snev space.
- (iii)X is a Fr 'Éthet space.
- (iv)X is a k -space.

Remark It is known that if a k-space has a σ -CF base, then it is metrizable. So, a question may be raised: If a k-space has a σ -CF quasi-base, is it metrizable? The question is interesting since we have already known the relation: $k + (\sigma$ -CF quasi-base) $\Leftrightarrow k + (\sigma$ -CF base). However, is this balance relation essential?

References

- [1] J. Ceder, Some characterizations of metric spaces, Pacific J. Math., 11(1961), 105-125.
- [2] R. Engelking, General topology, Warszawa, 1977.
- [3] Ge Ying, On the problem of T. M izokam i, Q & A in General Topology, Vol 10(1992), 79-80
- [4] Liu Chuan, Space with a O-compact finite K-network, Q & A in General Topology, Vol 10 (1992), 81-87.
- [5] E. Michael, Topologies in spaces of subsets, Trans Amer. Math. Soc., 71(1951), 152-182
- [6] T. M izokam i, On CF fam ilies and hyperspaces of compact subsets, Topology and its Applications, 35 (1990), 75-92
- [7] T. M izokam i and K. Koiwa, On hyperspaces of compact and finite subsets, Bull Joetsu University of Education, 6(1971), 1-14.
- [8] A. Okuyama, Note on hyperspaces of compact subsets, Math. Japan, 24(1979), 301-305.

关于Lasnev 空间的超空间

谢琳

(辽宁师范大学数学系, 大连 116029)

刘 勇

(大连铁道学院, 大连 116022)

摘 要

讨论了Lasnev 空间的超空间的某些性质 文中构造一反例, 证明存在可数Lasnev 空间, 其紧子集超空间不是层型空间 并指出文[6]中关于上述结果的证明中有一关键性失误, 故[6]中的反例 尚不能说明上述结论成立 本文还对具有 σ -CF 拟基的 k 空间给出一个刻画定理

On Hyperspace of Lasnev Space

X ie L in

(Dept of Math, Liaoning Nomal University, Dalian 116029)

L iu Yong

(Dept of Basic Course, Dalian Railway Institute, 116022)

Abstract In this paper, some properties of the hyperspaces of no rempty compact subsets of some Lasnev spaces are discussed and a mistake in [6] is corrected

Keywords closure-preserving, CF family, Lasnev space, stratifiable space

Classification AM S (1991) 54B 20/CCL O 189. 1

0. In troduction

In [6] T. M izokam i wanted to show that there exists a countable Lasnev space X such that its hyperspace K (X) of compact subsets is not stratifiable space. However, in the proof given by T. M izokam i there is a critical m istake, hence this problem is still unsolved.

In Section 1 we will construct a Lasnev space which is different from that given by T. Mizokami and prove that its hyperspace of compact subsets is not stratifiable

In Section 2, a property of L asnev space with σ -compact finite close K-network is characterized, and an example is given to show that there exists a L asnev space which has no σ -compact finite closed K-network and its hyperspace is M of space.

Finally, we prove that a k -space which has a σ -CF quasi-base is metrizable space

Every space in this paper is assumed to be regular Hausdorff space. Let ω denote the set of all positive integers and ω the first uncountable order number. Other notations in general topology are referred to [2]. The extent of space X is denoted by e(X). The symbol Q denotes the set of rational numbers

Let $\mathbf{K}(X)$ denote the hyperspace of nonempty compact subsets of X with finite topology. $\mathbf{F}(X) \subset \mathbf{K}(X)$ is the space of finite subsets of X. O ther relative notions and notations of hyperspace can be found in [5].

1 An Example

The closed continuous image of metrizable space is called Lasnev space M₂ (or M₃) space is

* Received Dec 3, 1994

called stratifiable space. The problem that whether the hyperspace of a Lasnev space is stratifiable is still open ([6], [8], [7]).

Remark 1 In [6], T. M izokamiwants to show that there is a Lasnev space X such that $\mathbf{K}(X)$ is not stratifiable (example 2 1). Unfortunately, his proof has a critical mistake which can not be made up. However, M izokami's idea still greatly inspired us

Example 1 1 There exists a countable Lasnev space X such that $\mathbf{K}(X)$ is not stratifiable space

(i) The construction of X. Let S be the set of irrational numbers in crosed interval [0, 1]; D be a countable dense subsets of S; $N_0 = \{0\}$ $\{1/n: n \ \omega\}$.

Let $X = D \times N_0$ $S \times \{0\} \subset R^2$. $X = X / S \times \{0\}$ is the quotient space obtained by identifying $S \times \{0\}$ to a point f: X denotes the quotient mapping and $p = f(S \times \{0\})$. Obviously f is a closed mapping, hence X is a Lasnev space

Remark 2 The space X in [6] is constructed as follow s:

$$X = \{x \ Q : 0 \le x \le 1 \text{ and } x \ 1/n(n \ \omega) \} \times (\{0\} \ \{1/n : n \ \omega\});$$

 $A = \{(x, 0) : (x, 0) \ X \};$
 $X = X \ /A, p = f(A);$
 $N_k = (1/(k+1), 1/k) \times [0, 1/k] \ X; N = {}_k \omega N_k;$
 $N = f(N), \text{ where } (1/(k+1), 1/k) \text{ is open interval}$

For comparison, in the following most of the notations are adopted from [6], but some will be regulated

(ii) The proof that $\mathbf{K}(X)$ is not stratifiable space. Suppose that $\mathbf{K}(X)$ is stratifiable space, then there exists a CP closed neighbourhood base B of $\{p\}$ in $\mathbf{K}(X)$ ([1] Lemma 7. 3). For each B B denote $O(B) = \{F(\mathbf{K}(X); p \in B)\}$, it is easy to know that $O(B) = \{O(B); B\}$ is a neighbourhood base of B in A. Other notations are as follows:

For every d D,

$$I_n(d) = (\{d\} \times (0, 1/n]) \quad X_n(d) = f[I_n(d)];$$

for x_i $I(d_i)$ $(i \le n)$ (where $I(d) = I_1(d)$),

$$B(x_1, ..., x_n) = \{\hat{B} \mid B: \{p, x_1, ..., x_n\} \mid \hat{B}\};$$

for
$$r_1, r_2 Q [0, 1], r_1 < r_2;$$

$$S (r_1, r_2) = \{ (a, b) X : r_1 < a < r_2 \} = ((r_1, r_2) \times N_0) X ;$$

$$S (r_1, r_2) = f [S (r_1, r_2)];$$

$$O (B) / S (r_1, r_2) = \{ O (B) S (r_1, r_2) : B B \}.$$

Firstly, we will prove the following basic fact If $B \subseteq B$, and O(B) restricted in $S(r_1, r_2)$ is a neighbourhood base of p in $S(r_1, r_2)$, then for every d D (r_1, r_2) , every β_1, β_2 (r_1, r_2) $Q(\beta_1 < \beta_2)$ and n ω , there exist $x = I_n(d)$ and two rational numbers $\alpha_1, \alpha_2 = (\beta_1, \beta_2)$ such that O(B)

(x))/S (α_1 , α_2) is a neighbourhood base of p in S (α_1 , α_2).

If otherwise, then there exist d D (r_1, r_2) , β_1 , β_2 (r_1, r_2) Q, for every x_i I(d) and α_i , α_{i+1} (β_1, β_2) Q $(\alpha_i < \alpha_{i+1})$, there exists a neighbourhood V_i of p in S (α_i, α_{i+1}) such that S (α_i, α_{i+1}) $O(B) \not\subset V_i$ for every B $O(B) \not\subset V_i$ for every $O(B) \not\subset V_i$ for every O(B

$$O(B) = \underset{i \in \omega}{O}(B(x_i)),$$

so there exists j wand B B (x_j) such that

O(B) $S(\beta_1, \beta_2) \subset V$, therefore O(B) $S(\alpha_j, \alpha_{j+1}) \subset V_j$, this is a contradiction

Let $\{b_i\}_i$ ω denote the set of rational numbers in (0, 1). Applying above proved facts, we take inductively countable many elements $\hat{B}_n(n-\omega)$ in **R** and a point sequence $\{x_n\}_n$ ω

(i) Choose d_1 D. We take x_1 $I(d_1)$ and rational number $\alpha_1 < \beta_1$ such that $O(B(x_1))/S(\alpha_1, \beta_1)$ is a neighbourhood base of p in $S(\alpha_1, \beta_1)$ and $b_1 \notin (\alpha_1, \alpha_1)$.

Take d_2 D $(\alpha_1, \beta_1), x_2$ $I_2(d_2), \alpha_2, \beta_2$ (α_1, β_1) Q such that $b_2 \notin (\alpha_2, \beta_2)$ and $O(B(x_1, x_2))/S(\alpha_2, \beta_2)$ is a neighbourhood base of p in $S(\alpha_2, \beta_2)$.

Since $O(B(x_1))/S(\alpha_1, \beta_1)$ is a neighbourhood base of p in $S(\alpha_1, \beta_1)$, choose $B_1 \cap B(x_1)$ such that $x_2 \notin O(B_1)$.

- (ii) For $n \ge 1$, assume that $d_n = D = (\alpha_{n-1}, \beta_{n-1}), x_n = I_n(d_n), \alpha_n, \beta_n = (\alpha_{n-1}, \beta_{n-1}) = Q$, $B_{n-1} = B(x_1, ..., x_{n-1})$ have been chosen and satisfy:
 - (1) $O(B(x_1,...,x_n))/S(\alpha_n,\beta_n)$ is a neighbourhood base of p in $S(\alpha_n,\beta_n)$;
 - (2) $b_n \notin (\alpha_n, \beta_n)$;
 - (3) $x_n \notin O(B_{n-1}).$

Then choose d_{n+1} D (α_n, β_n) , x_{n+1} $I_{n+1}(d_{n+1})$, α_{n+1} , β_{n+1} (α_n, β_n) Q such that $b_{n+1} \notin (\alpha_{n+1}, \beta_{n+1})$ and $O(B(x_1, ..., x_{n+1}))/S(\alpha_{n+1}, \beta_{n+1})$ is a neighbourhood base of p in $S(\alpha_{n+1}, \beta_{n+1})$. By inductive assumption we can choose B_n $B(x_1, ..., x_n)$ and $x_{n+1} \notin O(B_n)$.

As above we take inductively $\{B_i\}_{i=\omega}$, $\{x_i\}_{i=\omega}$ and interval family $\{(\alpha_n, \beta_n)\}_{n=\omega}$ satisfying:

- (a) $\lim \alpha_n = \lim \beta_n = y$ S, and $\lim X \lim x_i = (y, 0)$ X, then $\lim X \lim x_i = p$.
- (b) $\{x_1, ..., x_n, p\}$ B_n , but $\{p\}$ $\{x_i\}_i \ \omega \notin B_n$, this is due to $x_{n+1} \notin O(B_n)$.

So the compact set $F = \{p\}$ $\{x_i\}_i \ \omega \in \mathbb{R}^n$ Take arbitrarily a neighbourhood $V_1, ..., V_m$ of F in $\mathbf{K}(X)$, where V_i is an open subset of X. It is readily to verify that there exists k such that $\{x_1, ..., x_k, p\}$ $V_1, ..., V_n$, then $V_1, ..., V_m$ B_k \emptyset Hence F CL $(n \omega B_n)$. How over, B is a CP closed neighbourhood base, this is a contradiction

Remark 3 There are some m is prints in [6], but the key fault is that the set N is regarded as a neighbourhood of $\{p\}$ in $\mathbf{K}(X)$. In fact, N is not even a neighbourhood of p in X. In additional content of $\{p\}$ in $\{p\}$ in

tion, if the concrete construction of neighbourhood base of p is not given defintely, the results that the neighbourhood base of $\{p\}$ is not CP family can hardly be proved. Moreover, even if K (X) of Example 2.1 in [6] is not M_2 space, the proof will also be more difficult than that in this paper.

2 K-network, CF quasi-base and Lasnev space

Let U be a fam ily of subsets of X. We call U compact-finite if $\{U:U \ U,U \ F \ \emptyset\}$ is finite for each F K (X); U is a K-network of X if for each K K (X) and every open set $V \supset K$ there exists a finite fam ily $U \circ C$ u such that $K \subset U \circ CV$; U is CF fam ily if U/K is finite fam ily for every K K (X); U is a quasi-base of X if for every open subset V of X and every point X V, there exists U U such that X $Int U \subset U \subset V$.

It is known that compact-finite family must be CF family.

The following results are well-known

Theorem A For a space X the following are equivalent:

- (1) X is a L a snev space.
- (2) X is a Fréhet space and has a O-compact finite K-new ork.
- (3) X is a Fr & het space and has a O-CF K-network.

From (2), it is natural to ask that whether every Lasnev space has a σ -compact-finite closed K-network ^[6]. Y. Ge and C. Liu have proved that a Lasnev space has a σ -compact-finite closed K-network if and only if it is a N space ^{[3], [4]}. Here, we give a necessary condition for the existence of the σ -compact-finite closed K-network of any Lasnev space

Theorem 2 1 X is a space and has a G-compete finite closed K-new ork. For every m etrizable space M, if there exists a continuous closed m apping f:M X, then for every $x \in X$, the inequality $e(f^{-1}[x]) \subset L(M)$ $(f^{-1}[x]) \subseteq N \cap holds$

The proof is directed and so is omitted

In [6], T. M izokam i proved that if a Lasnev space X has a σ -compact-finite closed K-network, then $\mathbf{K}(X)$ is paracompact σ space

The following example shows that this condition is not necessary.

Example 2 2 There exists a Lasnev space X which has no σ -compact-finite closed K-network and $\mathbf{K}(X)$ is M 0 space

A space is called M o space if it has a σ -CP base consisting of clopen sets

- (1) The construction of X. Denote $M=\oplus\{M \bowtie C < \omega\}$, where $M \cong \{x^{\alpha}_n : n \in W\}$ $\{x^{\alpha}_w\}$ is homeomorphic copy of $N = \{0\}$ $\{1/n : n \in W\}$, where x^{α}_w is the unique accumulation point of $M \bowtie I$ let $A = \{x^{\alpha}_w : \alpha < \omega\}$, X = M / A is the quotient space obtained by identifying A to a point Let $f: M = \{x^{\alpha}_w : \alpha < \omega\}$, X = M / A is the quotient space obtained by identifying A to a point Let $A = \{x^{\alpha}_w : \alpha < \omega\}$, A = M / A is the quotient space obtained by identifying $A = \{x^{\alpha}_w : \alpha < \omega\}$, from theorem 2 or $\{x^{\alpha}_w : \alpha < \omega\}$, $\{x^{\alpha}_w : \alpha < \omega\}$, where $A = \{x^{\alpha}_w : \alpha < \omega\}$, where $A = \{x^{\alpha}_w : \alpha < \omega\}$ is home-one or $\{x^{\alpha}_w : \alpha < \omega\}$, where $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$, where $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$, where $A = \{x^{\alpha}_w : \alpha < \omega\}$, and $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$, where $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$, where $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$, where $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the unique accumulation point of $A = \{x^{\alpha}_w : \alpha < \omega\}$ is the
 - (2) The proof that $\mathbf{K}(X)$ is $M \circ \text{space W e still denote } f(x_i^{\alpha}) = x_i^{\alpha} (i < \omega); X_k = \{x_i^{\alpha}; i \leq k, \alpha < \infty \}$

 $\{\omega\}$; $\{U\}$ $\{D\}$ $\{D\}$

$$\mathbf{U}_k = \hat{\mathbf{U}}(F): F \quad \mathbf{F}_k; U \quad \mathbf{U}(p) \text{ and } U \quad X_k = \emptyset, \{\mathbf{H}_k = \hat{F}: F \quad \{\mathbf{F}_k\}.$$

One can readily check that \mathbf{H}_k is a CP fam ily. Now, we show that \mathbf{U}_k is a CP fam ily for each k ω Let $\mathbf{U} \subset \mathbf{U}_k$, $E \in \mathbf{U}$. Since E is compact E X_k and $A = \{\alpha E (I_{\alpha_i}^{k+1} \setminus p\}) \emptyset$ are finite sets Denote $A = \{\alpha_i\}_{i \in n}$. For each α_i A, take $m_i = \min\{j: x_j^{\alpha_i} E (I_{\alpha_i}^{k+1} \setminus p\})\}$; $F_0 = (E X_k) (x_{m_i}^{\alpha_i}: i \leq n\}$; $V = X \times \emptyset$ Without loss of generality, assume that $|E| = N \circ \emptyset$. Then V (F_0) is a neighbourhood of E in $\mathbf{K}(X)$. For any U(F) \mathbf{U}_k , if K U(F) $V(F_0)$ \emptyset , then E $X_k = K$ $X_k = F$, and $\{x_{m_i}^{\alpha_i}\}_{i \leq n} \subset K$ $(X \times X_k) \subset U$, so E $(X \times X_k) \subset U$, thus E U(F). Since $E \notin \mathbf{U}$, we have $V(F_0)$ $(\mathbf{U}) = \emptyset$, hence \mathbf{U} is closed. This completes the proof

In [6], T. M izodam i gave an example to show that there exists a Lasnev space without σ -CF quasi-base and raised the question; "W hich kinds of spaces have a σ -CF quasi-base? The following results characterize completely those k-space (thus Fréhet spaces and Lasnev spaces) which have such a base

Theorem 2 3 k -space w ith O-CF quasi-base is m etrizable space

Proof Let B= {B_n: n ω } be a quasi-base of k -space X, where B_n is CF family. For each x X, denote B_n(x) = {B B_n: x IntB }; $V_n(x) = B_n(x)$. Since B is a quasi-base, for every U containing x there exists n ω such that $V_n(x) \subseteq U$. We prove that $V_n(x)$ is a neighbourhood of x. If not, then x CL ($X \setminus V_n(x)$). Since X is k-space, there exists a compact subset F such that x CL ($X \setminus V_n(x)$) F) $\subseteq F$. Denote the compact subset CL (F ($X \setminus V_n(x)$) = H. {B H: B B_n(x)} is a finite family. Let B_i B_n(x) { $i \le m$ } such that {B_i $H: i \le m$ } = {B H: B B_n(x)}. Then

$$(\underset{i \leq m}{B_i}) \quad H = \{B \quad H : B \quad B_n(x)\} = V_n(x) \quad H.$$

$$H \setminus (\underset{i \leq m}{B_i}) = H \setminus V_n(x) \supset (X \setminus V_n(x)) \quad F.$$

Since x IntB ($i \le m$) and $i \le mB$ i is a neighbourhood of x,

$$x \notin CL(H \setminus_{i \le m} B_i) \supset CL(F (X \setminus_n (x)).$$