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The Generalization of W hitney’ sL enma and A ppl ication”
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Abstract W hitney’s lanma is an important theoran in the local singularity theory of
gem s of C” functions In this paper, we prove the global conclusion of this lemma
Based on this generalization, the plastic yield criterion for certain kind materials is dis-
cussed in detail W efind that for thiskind materials themost general form of the plastic

yield criterion should be g(J,J2,J5°)= Q Finally, we shall alo give ome practical ex-
amplesfor explanation
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1 Prelm inariesand symbols

Notation: Let o= (o, 0, ,00),B8= (Bu, o, . B, (& B)= (o, 00, 00, B, B, Bu), 0 (i
=1,2, ,n)and B(j=1,2, ,k) benon-negative integers Then

al= 3 o 161= 3 5.

y ol 18
D™ (X.y) = X% 8(%""6}/’131 a,gkf (X,Y),

where (x,y)= (x1,x2, ,Xny1,y2 ,y«d R' R
The ring of C* functionson R"x R*w ill be denoted by C* (n+ k). M (k)= {f C” (n+

K) |f |rx = 0}, thenM (k) isan idea in C” (n+ k). It iseasy to show thatf M (k) if and
only if

k

f = fiyi, fi C”(n+ k).
Zl iYioTj ( )
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M (K= {f C"(n+ k) P*#f |vx(0 = Ofor all aand Bvith |B]< s}.
R"x {0} isa subpace of R"x R {(x,y) R"™ R|y;=y,= =y=0}
Definition 1 A C” function f on R"X R*iscalled f lat on the subgpace R"x {0} C R"x R, if

f and its partial derivatives & all orders are zero at every point & R"x {0}.

Definition 2 M (k)" = oM (k)
It isobvious thatM (k) is the set of all flat functionson R"x {0}.
Henceforth, M (1) is the focal point of ourwork, i e , theflat functionson R"x {0} C

R"x R
2 Lanmas

Lenmal Vs N, thefollaving equality holds M (k)* M (k)*=M (k)".
Proof First, wewill show thatM (k)- M (k)*=M (k)"

(1) Vi M(k)cc”(n+k),g M (k)*, becauseM (k)” is an ideal of C” (n+ k),
thereforef- g M (K)"=>M (k)- M (k)" M (k)"

(2 Vg ™K~

k

g(x,y) =J’01 élitg(x,ty)dtirol[z1 é,ajg(x,ty)yJ dt= Zklhj x,y)yi,

w here
hi (x,y) =J'0 é,ajg(x,ty)dt

W e need only to show thath; M (k)” (j= 1,2, k).
Vo= (o, 0, ,00),B= (B, B ,B)., wehave

D “h; (x, 0)= D""ﬁ[[ol ﬁg(x,w)dﬂ

¥1= 0, y,=0
1 e+ [B+ 1
1 d
o U an anyk gh @&Q(X'W)dﬂ
Note that if g M (k)”, then itspartial derivativesof all orders belong toM (k)*, too
(D efinition of the flat function). From this,

y1=0, .y, =0

ao(|+ |Bl+ 1
ar orgh gpt gpIx0=a

Therefore, D “*hj(x,0)= 0= h; M (k)“. Furthemore, M (k)*S M (KM (k)°.
Synthesize (1) and (2): M (k)M (k)*=M (k)"
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U sing the above equality and by induction, we know that Vs N,
M (KM K)* =M (k)"

Lenma2 f M (k)” if and only if Vs N, f can be represented by the follov ing f om:
f(x,y)= g_fﬁ(x,y)yfl yk,

wherefg M (k)~.
Proof It can be directly deduced from L enma 1

Lemma 3 (Generalization of E Boerel Theoran) Given a sequence o C” functions on R"
{fn(x)}(m=0,1,2, ), thereexistsaC” function on R"* R f:R" R-R such that

D%"f (x,y)

Rix {0y = fm(x).
Proof Vr> 0andfm(x), wecanmakeaC” function fmw ith compact support K (O, r) w hich

is the closed ball around Ow ith radiusr: |x |<r, and fm(x)= f (x) on K (0, é‘). For smple

and convenient, fm(x) iswritten asfm (x) yet Oncemore take aC” function

PR - R,0= P=< 1, Hy) = Lforall |y|=< 7, Ry) = Ofor |y|=r

L et

o

oy = Y By &)

A ssume that the sequence tn(m= 0,1,2, ) can be defined to make the series
o . )
5y D“P[fni%ly %y)J (2)
-0 .

oconvergnet uniformly for each o= (o4, 02, , 6h) and each natural number p, then f (x,y)
would be aC” function and could be differentiated tem by tem.

Since for each tn, {iny) = 1, aslong as |y | is snall enough, and the differentiation isa
local property. Thisgives

D™ (x,y)

R {0y = fm(X).

Thereforew e need to show that a sufficiently rapidly increasing sequence { tn} makes the se-
ries (2) uniformly convergent for every @ Now, w rite them-th tem in (1) in the fom:

tm m!

(tny)"RHtny) = [fj mfm(x)(llm (tny).

The function Y vanish outside { [ty |< 1}.
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LetMmn=max{ [D*" (fn (x) ¥ (y)) |k} p<m}. Note that for each given m, there are
only finitely many (x p) with ||+ p<m and that supp (Fnh) C{ (x,y) | |x |= 1. |y |= 1}
HenceM m exists Since tn> 1, it follow s that for |0(|+ p<m that

[_ZL Mm<|V_|m

‘D“p[h“mym%yﬂ | < (o] 2 L

m!
® M w
Now, choose a sequence &> 0 such that z m=0 & converges and choose tm> . then

M

. <& Thus for ||+ p<m, them-th elenent of (2) is dominated by 6.
Since r is arbitrary, the lanma is true

From thislemma, we know that for any given formal pow er series (not necessarily con-
vergent) z m= o](‘””‘('x‘)'m| y", there existsaC” function on R"* Rwhose Taylor series at every

point (x,0) R"x {0} isexactly thisformal pow er series
3 Themain results

Theoren 1 Assumethath: R"* R— R isaC” function and f laton R"x {0} ((x,y)= (x1, xz,
,Xn,y)), then
hx,{ y) onR"x R*
r(x,y) =910 on R" x {0}
h(x, - *I-—y) on R"x R
isC” on R"*X R and f lat on R"x {0O}.
Proof Note that
®R" x R* SR 'x R, (x,y) |- (x,4 y)
and
@R xR -R'x R,y - - y)
are an entirety diffenorphisn (C” topology map) from R"x R onto R"X R" and from R"x
R onto R'* R, regpectively, and h(x,y) isaC” functionon R"*X R" andon R"X R, re-
gectively.

The key point of the proof is to show that r(x,y) isflaton R"x {0}, i e, r(x,y) and
itspartial derivativesof all orders are continuous and zero at every point of R"x {0}. Consid-
er

cae (1) Asy-+0O

Since h(x,y) isdifferentiableon R"x R and flat on R"x {0}, therefore, for any o= (o,
0k, ,0h),06= 0(i= 1,2, ,n), oneknow s easily that

r(x,0) = Q

Now, by inductionwew ill prove that for each o= (0w, 02, , 0«) and any positive integer

— 322 —
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



*Br(x,0) = Q
Asp=1,

Iim
y-+0 y y-+0 y

0 _ ®0 o 0
Dt (x,0) = D*°h(x y) - D*h(x 0): lim D*h(x, y).

However, D“°h(x,y) isal® flat on R"x {0}. Therefore, Vs N, there exists a flat

function ¥Y(x,y) on R"x {0} such that
D*°h(x,{ dy) = (ay) ¥, { By).
Take s= 3, we have
D*'r(x,0) = Ajmom%ml: Q
A ssume that D $“r (x, 0)= 0 holds for 8= k
A's = k+ 1, from the expression of r(x,y), by induction, we obtain that asy> 0, Vk
N, D**r(x,y) has the follow ing fom:
Dy = ARENOT v) aepf el vy o s i e y) g
oy Wy W y)>:

w here ax, ax+ 1, , ax 1 are constants (independent of x andy), u= ‘l_y

In order to show thatD ¢ ‘r(x, 0)= 0, we need only to show that for each i (i= 1,2, ,
k- 1), the right derivative of Gi(x,y) with repect toy at y= O iszero, i e D%'Gi(x,0)=
Q W here,

ae D5 h(x ‘I_V)
i , , R" R,
Gi(x,y) = Wy (y) R (4)

0, (x,y) R"x {0OL
Note thatD & 'n(x, u) isflaton R"x {0}, therefore Vs N, there exists the flat func-
tion on R"x {0} g (x, u) such thatD & ih(x,‘/_y): yégﬂ(x,*l_y).
U sing the above expression and according to definition: D ?'Gi(x,0)= Q

case (2) Asy- - 0, similar to case (1), we know thatD *fr(x,0)= Q

Synthesize case (1) and (2): D**r(x,0)= 0, i e r(x,y) and itspartial derivatives of
all orders are zero on R"x {0}.

Finally, using lenma 2 and the expressionsof r(x,y) andD *fr(x,y), we have that for
any o= (ou, 00, ,0n) and forany s N and any non-negative integer B, there exists the flat
function &.s(x,u) on R"x {0} such that

P x,y) [ = Iy |° &nsx. A y) |

It follow s that

D*’r(x,y) = 0= D *#(xo, 0).

(%, ¥) - (xg 0
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Therefore, r(x,y) and its partial derivatives of all orders are continuous at every
point of R"x {0}. Thereby, r(x,y) isC” and flat on R"x {0}.
Theoren 2 (Global W hitney’sLenma) Letf (x,y) bea C” function on R"x R, and
V(x,y) R™R,f(x,- y)=1 (x,y). Then thereexistsa C” function

g:R"x (R" {0}) -R

such that g (x,y?) = f (x,y).
Proof Since V (x,y) R™ R,f (x,- y)=f (x,y), thereforef (x,y)=f (x, |y |).
Set u= y*(Vy R). Thenu=0and |y |=4 u. Thus

f(x,y) = f(x, |y |) = f (x,*l_u).

Because ®R"x R* -R"x R*, (x,u) |- (x,4 u) isan entirety diffenorphisn from R"x
R" onto R"x R", thereforef (x,{ u) isC” on R"x R".

As (x,u) R"x R", choose g(x,u), then g(x,u)=f x,{ u) c”onR" R’ and g
(x,y)=f (x, [y D=1 (x,y).

In a geneneral way, although f (x,u) isC” on R"x (R* {0}), asabove stated, f (x,
‘l_u) is not necessarily C* on R"x {0}! How ever, under the hypothesisof this theorem, we
can prove that f (x,J_u) and itspartial derivativesof all orders can be extented continuous-
ly to R"x (R* {0}). Thus, g(x,u)=f (x,‘/_u) isaloC”on R (R* {0}).

Since V (x,y) R"™ R,f (x,- y)=f (x,y). Therefore, D** 'f (x,0)=- D*™ f (x,
0). Thereby D>* *f (x,0)= Q Therefore, f (x,y) has the formal power series at every
point (x,0) R"x {0}) asfollows
= DT (X, 0)

2. @ V"
Consider the follow ing formal pow er series

=)

DO,Z‘n[( O.)m
2. Cmr 1

From L enma 3, we know that there existsaC” function gua(x,u) on R"* Rwhose T ay-
lor series at every point (x,0) R"x {0} isexactly this formal pow er series

Set h(x,y)=f (x,y)- g(x,y?). Then h(x,y) has two properties as follow s

(1) Thefomal power seriesof h(x,y) at any point of R"x {0} is zero, thereby h(x,
y) isflat on R"x {0}.

(2) V (x,y) R'%R, hix,- y)=hi(x,y).

U sing property (1) and Theorem 1, we know that
hx,{ u) (x,u R'x R

(x,u) R"x {0}

isC” on R"x (R* {0} and flat on R"x {0}. In other words, h (x, J_u) and its partial
derivatives of all orders can be extented continously to R"x (R* {0}). Thus, h(x, J_u)
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r(x,y) =



and g«(x, u) areall C” functionson R"x (R* {0}). From this, we can deduce that f (x,
J_u) isC”onR"x (R* {0}).

Take glx,u)=f (x,¥ u), (x,u) Rx (R* {0}), then g(x,u) isC” on R"x (R’
{0}) andg(x,y) =1 (x, [yP=f (x,y), V(x,y) R'*R}L

4 The application and examples

Leanma 4 (G Glaeser) Assume thatf (x1, ,xa) isaC” and symmetric f unction in vari-
ablex1, ,xn(i e for any replacanent d n letters T, aw ays hold f (x1, ,xn)=f (xmw,
xmm)), then there existsa C” function g(y:, ,yn) such that f= g° N. W hereN denotes the
N ev ton mapping:

n

Y1 = 21Xi,

Y2 = Z XiXj,
N = 1<bej<n

n

Yn = IIx.

i=1

Proof It can be seen in [1] p. 125,3 4

Theorean 3 A ssume that the material is isotrgpic, the plastic yield function isC” and the
yield stresses (absolute value) for canpression and pulling are the same, then the plastic yield
surf ace can bew ritten by thefom: g(J1,J2,J¢°)= 0, whereJ:1= 0i+ Go+ 5, J2,Jsare the sec-
ond and third invariants o the deviatoric stress tensor.

Proof  Since thematerial is isotropic, therefore the plastic surface can bew ritten by F (a3,
o2, )= 0, where F isa symmetric function in ¢i, ¢z and 6, 01, ¢z and 03 denote the principal
stresses
First, second and third invariantsof stress tensor are
Ji= 0+ 02+ O,
Ni=(Jz2= (G + ROz + (301),
J3= 010203
and F isC” and synmetric in 0i, ;2 and 03, from L enma 4, we know that there existsaC”
function f such that
F=1f SN
N amely the plastic yield criterion can be represented by f (J1,J2,J3)= Q
Furthemore, from the relation betw een stress and the deviatoric stress tenor in plas
ticity, we easily know that the plastic yield surface can be denoted by
f(31,d2,J5) = Q
A coording to [2],p. 17, if for compresion and pulling the yield stresses of the material
are same, then f must be an even function of J= From Theorem 2, there existsaC” func-
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tion g such that g (31,32,35°)=f (31,32, J53).
If we do not consider the effect of hydrostatic pressure, the plastic yield surface for this
kind material should have the follow ing form:

g@2J3%=aqa

[2],p. 45 pointed out that Prager found that the abservations can be approximately fit-
ted by taking
‘2
g(02,35) = J2(1- Q 73%%
2
in place of g= J2 This exanple is by no meansoccasional From Theorem 2, we know that
it isonly a gpecial exanple in the general case for this kind materials

References

[1] JeanM artinet, Singularities of snooth f unctions and maps,

L ondonM athematical Society L ectureNote Series 58 CanbridgeU niversity Press, 1982

[2] R Hill, Themathematical theory o plasticity, TheOxford Engineering Series, 195Q

[3] TH. Brocker, D iff erentiable germs and catastrophes, L ondon M athematical Society L ecture N ote Series
17, CambridgeU niversity Press, 1975

W hitney
( , 558000)
( , 550025)
c” ,W hitney

19,3239 =0

— 326 —
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



