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Abstract Recently, L. C Hsu and W ang Jun generated nev combinatorial number-theoretic-
functions serving as generalizationsof Euler ' stotient In thispaperwe form an extensive classof
generalized Euler totients by translating themost general counting functionsof H su andW ang on
integers to the setting of N arkiew icZ' s regular convolution Thisclasscastsin the same framavork
various fanous generalizationsof Euler's totient, such asCohen's totient, Jordan’'s totient, Klee'
s totient, Schemmel's totient, Stevens s totient, the unitary analogue of Euler’'s totient and Euler’
s totient w ith regpect to N arkiew icZ s regular convolution
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1 Introduction

Euler's totient @ (n) counts the number of integersa (mod n) such that ged (a,n) = 1.
There is in the literature a large number of generalizations and analogues of Euler's totient, w ith
most of then being combinatorial number-theoretic functions For exanple, Jordan’s totient
Ju(n) counts the number of u -vectors a1, a2, ,as of integers (modn) such that gcd (as, a,

,au,, n) = 1. General accountson generalizations and analogues of Euler's totient can be found
e g in[3, ChapterV ], [5], [12, ChapterV ] and [13].

Hsu and W ang adopt a nev combinatorial number- theoretic approach to generate general-
izations and analoguesof Euler's totient in their recent papers [7]and [15] (see also [6]). V ari-
ous fanous generalizations and analoguesof Euler's totient can bew ritten in the language of this
approach Euler's totient @ (n) is, in the language of this approach, the number of integersa
(modn) such thata# 0 (modp ) for allp |n.

Themost extensive counting theorem of [ 7] on integers concerns certain restricted setsof in-
tegers (mod n), while the most extensive counting theorem of [15] concerns certain restricted
sets of u -vectors of integers (modn), see [7, Theoren 2 2] and [15, Theoran 3 3] or Re-
marks 3 1 and 3 2 ofthispaper In thispaper we combine the ideasof [7, Theoren 2 2] and
[15, Theorem 3 3]. W e present the combined result in the setting of N arkiew icZ's regular convo-
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lution Hsu and Wang [7, 15] deal with the Dirichlet convolution, which is an example of
N arkiew icZ' s regular convolution

W e interpret in term sof the generalized Euler totient of thispaper the follow ing famous gen-
eralizations and analogues of Euler's totient: Cohen's totient, Jordan’s totient, Klee's totient,
Schemmel’s totient, Stevens's totient, the unitary analogue of Euler’s totient and Euler’s totient
w ith regect to N arkiew icZ's regular convolution, see Exanples 3 1-3 2 W e al® obtain, as a
gecial case of the generalized Euler totient of thispaper, the exanple of a rational arithmetical
function of order (1, r) with regect to N arkiew icZ's regular convolution given in [6], see Remark
32

2 Regular convolution

W e assume that the reader is faniliar w ith the concept of N arkiew icZ's regular convolution
Background material on regular convolutions can be found e g in [6], [9, Chapter 4], [10] and
[11]. W e use the sane notations as that in [6] In addition, we use the follow ing notations

L et A be a regular convolution and k a positive integer. The convolution A « is defined by
Ax(n) = {d:d“ A (n)}. Itisknown [11] that the convolutionA « is regular w henever the con-
volutionA is regular The symbol (m,n)A , k} denotes the greatest kth pow er divisor of m w hich
belongsto A (n). In particular, we denote (m,n)a.2= (M,n)a, (M,n)ox = (M,n)x, (M,Nn)o =
(m,n) and (m,n)u = (m,n) . Note that (n,n) is the usual greatest common divisor ofm and n.

3 Themain counting theorem

L etA be an arbitrary but fixed regular convolution L etQ be a set ofintegers (> 1) such that
eachA - primitiveprimepower (> 1) A -dividesatmost oneof them. Thismeans that for eachA
- primitiveprimepowerp‘(> 1) thereisatmostonei= 1,2, ,o(p") such thatp'it} Q. Note
that elenentsof Q areprime powers

Definition W e say that a positive integer n(> 1) isQ - ful if thefolloving W o conditions hold:

a) If pt A(n), thenp' A(g) forsaneq Q,

b) 1f p° A(n)andp' A(q) forsameq Q, theng A (n),

w herep'denotes anA - primitive prime paver > 1.

W e denoteu -vectorsof integersasa= a, &, ,a , andwewritea= b (modn) ifai= b
foralli= 1,2, ,u. Foreachq Q, letB (q) bea subsetof Zg, whereZg= {a:0< a< q, i
= 1,2, ,u}.

Definition W e say that a u -vector a isB -prime ton if

Vg Q having a canmonA - divisor > lwithn: Vb B(g): aZ b (mod q).
If aisB -prime ton,wewrite (@,n)s = 1.

Now, we introduce the functions that w e need in counting the number of u -vectorsa (modn
) such that (a,n)s = 1. Letf (g) denote the cardinality of B (q) , and let us denote the arithmeti-
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cal function defined by
1 if n= 1,
we(n) =95 (¢ D¥(q) f(g) if n= q gsisaproduct of distinct elenentsof Q,
0 othemw ise
IfQ is the set of allA -primitiveprimepowers (> 1) and ifB (q) = {0} forallg Q, thenus is
theA - analogueof theM "{o}biusfunction ta. In the case of Dirichlet convolution this becomes
the classical function 1. Finally, we define the arithmetical function @s by

De(n) = (E"*amws) (n) = dZ()(n/d)”us (d), (31)
whereE"(n) = n"for alln. It can be verified that if n isQ - ful, then
L f_(,qlJ
Ds = 1- o 32
(n) =n q‘!:(!n)[( q (32

Theoren 1L etnbeaQ -ful number. Then the number o u -vectorsa (modn) such that (a,n)s =
lisegqual to s (n).

Proof Letn= nin2 nsbe the factorization of n into prime pow ers such thatgi A (ni) , whereg;

Q, i= 1,2, ,s. LetNs(n) denote the number of u- vectorsa (modn) such that (a,n)s =
1. U sing the Chinese remainder theorem we can show thatNs(n) = Ns(ni))Nes(n2) Ns(ns) ,
cf. theproofsof [6, Theorem 1],[7, Theorem 2 1] and [15, Theoren 3 3]

W e next consider the valueofN s (ni). Leta}i Zn. Thenaican bew ritten uniquely asai =
mgi+ r,where0<m;< n/qg, j= 1,2, ,u, andr Zg. Clearly, (a,n)s= 1if andonly if
(r,m)s= 1, and (r,n)e = lifandonly ifr  Z§ B (q). Therefore

Ne(n) = (m/g)"'(a - f(a)) = ni(1- f (q)/a).
Now, application of the formulaN & (n) = Ns (n1)N&(n2) N (ns) proves that
Ng(n) = n" 1- f_('ﬁ')‘J .

qtakn) q
q Q

Thus, by (3 2), wehaveNs (n) = s (n). Thiscompletes the proof.
Several fanous totient functionsmay be presented in the language of the function @s (n) in
Theoram 1

Example 3 1 Jordan's totient Ju(n) is defined as the number of u -vectorsa of integers (mod n)
such that (a1, a2, ,as,,n) = 1 (see[3, ChapterV]). IfA = D, Q isthe set of all primes and
B (p)= {0} forall primesp , then Js reduces to Jordan's totient The expressions (3 1) and (3
2) reduce to the know n expressions (seee g [12, SectionV. 3])

1

Ju(n) = Z“ (n/d)’u(d) = n“L_ll[l- pJ'
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Example 3 2 Cohen's!” totient @« (n) is defined as the number of integersa (mod n*) such that
(a,n)«x= 1. fA = D, u= 1, Q is the set of the kth powersof primes, B (p*) = {0} for all
primesp and n is replacedw ith n“, then @ reduces to Cohen’s totient The expressions (3 1) and
(3 2) reduce to the know n expressions (seee g [12, SectionV. 5])

D) = 3 (0/)'u(@ =[] | 1- E)l .
Further examples include K lee's totient'®’, Schemmel's totient'™, Stevens's totien
¢!

" and

the unitary analogue of Euler's totien

Renark 3 1 IfA = D, u= 1landQ isa set of positive integers such that each prime number di-
videsone and only one of them, then Theoren 1 of thispaper reduces to Theoram 2 2 of [7]

Renark 3 2L et r be a positive integer. L etQ be the set of prime pow ersof the form p", where
p'(> 1) runs through theA -primitive prime pow ers such that o(p’) = r. ThenQ -ful nunbers
are the (A, r) -pow erful numbers (see [6]). W efom the setsB (q), 9 Q , asfollows For each
A -prinitiveprinepowerp'(> 1) andi= 1,2, ,r,letSi(p') be a subset of Zy'. LetM (p') de-
note the set of r x umatricesover Z}(p'} having theproperty that for everyM M } (p") there ex-
istsi= 1,2, ,r such that theithrow ofM belongstoSi(p'). Now, we define
B(@=8B(p)={a 2Zm=a= (Lp, ,pr- DM, M M (p)}
foreachqg Q. Then (a,n)s = 1if andonly if (@,n)s = 1, where (a,n)s: is as defined in
[6] Thus, in thiscase Theorem 1 of thispaper reduces to Theorem 1of [6] The function s
becom es the function &S, r} of [6] and is thusanA -rational arithmetical function of order (1, r)
IfA =D andS1= Sz2= = S:, thenweobtain Theorem 3 3 of [15]

References

[1] E Cohen, A n extension  Ramanujan's sum, DukeM ath 1, 16(1949), 85- 9Q

[2] E Cohen, A rithmetical f unctions associated w ith the unitary divisors of an integer, M ath Z , 74(1960), 66-
8Q

[3]L. E Dickon, H istory o the Theory o N umbers, Vol I, Chelsea, Nev York, 1971

[4] P Haukkanen, Classical arithmetical identities involving a generalization of Ramanujan's sum, Ann A cad
Sci Fenn Ser A. |M ath Dissertationes 68(1988), 1- 69

[5] P Haukkanen, Sane generalized totient f unctions, M ath  Stud , 56(1988), 65- 74

[6] P Haukkanen, A class o rational arithmetical f unctionsw ith canbinatorial meanings, J M ath Res Exp. ,
17:2(1997), 179- 184

[7]L. C Hsu andW ang Jun, Same canbinatorial num ber-theoretic ex tensions of Euler’s totient, in Combinatorics
and Graph Theory'95, Vol 2, Proceed ingsof the Summer School and International Conference on Combina-
torics, World Scientific, SinggporeN ev Jersey- ondon-Hong Kong, 1995

[8]V.L. Klee, A generalization o Euler's function}, Amer. M ath M onthly, 55(1948), 358- 359

[9] P. 1 M cCarthy, Introduction toA rithmetical Functions, SpringerV erlag,Ne~v York, 1986

— 522 —
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



[10]W. N arkiew icz, On a class o arithmetical convolutions, Collog M ath , 10(1963), 81- 94

[11] V. SitaRamaiah, A rithmetical sums in regular convolutions, J ReineA ngev. M ath , 303: 304(1978), 265-
283

[12] R. Sivaranakrishnan, Classical Theory o A rithmetic Functions, in M onographs and Textbooks in Pure and
AppliedM athenatics, Vol 126, M arcel Dekker, Inc , Nev York, 1989

[13] R Sivaranakrishnan, Themany facets o Euler's totient (I11): Generalizations and analogues, N ieuww A rch
W iskd , 8(1990), 169- 187

[14] H. Stevens, Generalizations o the Euler ®f unction, DukeM ath J , 38(1971), 181- 186

[15]Wang Jun and L. C. Hsu, On certain generalized Euler-type totients and M obius- type f unctions, Preprint
(Dalian U niversity of Technology, China).

— 523 —
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



