On the Structure of a Radical of Lattice-Ordered Rings

Gao Ting

(Dept of Math., Hebei Teachers University (East Campus), Shijiazhuang 050016)

Abstract We describe the P-radical and the l-B radical of an l-ring from a different angle and obtain the structure theorem of l-Q sem is mple rings. Furthermore, l-Q radical rings are discussed. Lastly, we consider the l-Q radical $Q(R_n)$ of a full l-matrix l-ring R over an l-ring R. We show that $Q(R_n) = (Q(R))_n$.

Keywords $l \cdot Q$ ideal, $l \cdot Q$ radical, $l \cdot Q$ radical ring, $l \cdot Q$ sem is imple ring

Classification AM S (1991) 06F25, 16N/CCL O 153 1, O 153 3

1 In troduction

In this paper we discuss the P-radical of a lattice- ordered ring (l-ring) anew from a different angle using the concept of l-quasi nilpotent ideal (l-Q ideal), and obtain the structure and some properties of the P-radical

We first collect some basic definitions and properties of l-rings in [2-5]. Throughout this paper R will denote an l-ring if not specified $R^+ = \{a \mid R: a \geq 0\}$. Let S be an l-ideal of R generated by the subset S of R. We use the term l-prime l-ideal instead of prime l-ideal given in [4, Definition 2 1]. An l-ideal P of R is l-prime if $I \subseteq P$ or $J \subseteq P$ whenever I and J are l-ideals of R with $IJ \subseteq P$; a nonzero l-ring R is l-prime if $\{0\}$ is an l-prime l-ideal; the P-radical of R is the intersection of all l-prime l-ideals of R (see [4, Definition 2 1 and 2 8]). The product of two (left, right, two-sided) l-ideals A, B of R is the (left, right, two-sided) l-ideal A of R, where R is R is an R prime R and R are R in R is an R prime R and R are R in R in R and R is an R prime R and R in R in

Proposition 1.1 (1) Let an l-ring R be an l-hom on orphic in age of R (R
eq PR), A an l-ideal of R, then R R /kerPand P(A) = (A + kerP)/kerP. M or eover, if $A \supseteq \ker P$, then R/A R P(A).

- (2) Let S be an l-subring of R, A an l-ideal of R, then (S + A)/A S/(S A).
- (3) Let M be an l-ideal of R, then any l-ideal of R M has the form A M where A is an l-ideal of R containing M, and R A (R M)/(A M).
- (4) Let A be a left (right) l-ideal of R, and T an l-ideal of A, then AT) = $\{c \mid R : |c| \le at$, $a \mid A$, $t \mid T$ } ($TA = \{c \mid R : |c| \le ta$, $a \mid A$, $t \mid T$ }) is a left (right) l-ideal of R.

^{*} Received Jan. 6, 1995. Project supported by Hebei Provincia Natural Science Foundation.

2 l -Q ideals and the l -Q radical of an l -ring

In this section some important properties of $l \cdot Q$ ideals, the $l \cdot Q$ radical of an l-ring are discussed. It is shown that the $l \cdot Q$ radical coincides with the $l \cdot B$ radical

Definition 2 1A left (right, or two-sided) l-ideal A of R is called a left (right, or two-sided) l-Q ideal of R, if for any l-ideal M of R, $A^* = (A + M) / M = \{0^*\}$ implies that A^* contains a nonzero nilpotent left (right, or two-sided) l-ideal of $R^* = R / M$.

An l-Q ideal may not be nilpotent, [5, Example 3 19] forms a case in point

Proposition 2 1 (1) Any nonzero l = Q ideal A of R contains a nonzero nilpotent l-ideal of R.

- (2) A nilpotent l-ideal is an l-Q ideal
- (3) Let A be an l Q ideal of R, M an l-ideal of R, then (A + M)/M is an l Q ideal of R/M.

Similar results can be stated for left (respectively right) l-ideals

Proposition 2 2 (1) A left (right) l - Q ideal A of R can be on bedded in an l - Q ideal A + AR (A + RA) of R.

- (2) Suppose A and B/A are l-Q ideals of R and R/A respectively, then B is an l-Q ideal of R.
- (3) Any sum of l^-Q ideals of R is an l^-Q ideal of R. In particular, the sum of all l^-Q ideals of R is an l^-Q ideal of R.

Since the l-radical N(R) of R is the union of all the nilpotent l-ideals of R([3, Th. 5]), l-radical is an l-Q ideal by Proposition 2.1 (2) and Proposition 2.2 (3). However, N(R) may not be nilpotent, as is shown by [5, Example 3.19]. This example also shows that nilpotent and l-quasi nilpotent are different in general

Definition 2 2 The sum Q(R) of all l - Q ideals of R is called the l - Q radical of R. If Q(R) = R, then R is called an l - Q radical ring; if $Q(R) = \{0\}$, then R is called an l - Q sem is implering.

Theorem 2 1 (1) The l-Q radical of R is the largest l-Q ideal of R, and contains all left (and right) l-Q ideals and left (and right) nilpotent l-ideals of R.

- (2) R/Q(R) is an l-Q sem is imple ring.
- (3) R is an l-Q radical ring if and only if every nonzero l-homomorphic image of R contains a nonzero nilpotent l-ideal

Proof It follows immediately from Proposition 2.2 and 2.1.

Definition 2 3W e define in R an l-ideal N (v) for every ordinal number v as follows

(i) $N(0) = \{0\}.$

Let us assume that N(v) is already defined for every v < u.

- (ii) If u = v + 1 is not a lim it ordinal number, N(u)/N(v) is the sum of all nilpotent l-ideals of R/N(v).
 - (iii) If u is a lim it ordinal number, $N(u) = \int_{v \le u} N(v)$.

Since every l-ring is a set, for every l-ring there exists an ordinal number w ith N(w) = N(w + 1). We denote this l-ideal N(w) of R by B(R), which is called the B aer radical (also l-B radical) of R. B(R) is characterized by the fact that R/B(R) has no nonzero nilpotent l-ideals and B(R) is the smallest l-ideal in our chain that g ives such a factor l-ring.

If $B(R) = \{0\}$, then we say that R is an l-B sem is imple ring; if B(R) = R, then we say that R is an l-B radical ring.

Part (2) of the next Proposition follows from Proposition 2 1 (1) and (2).

Proposition 2 3 (1) The l-B radical B (R) of R is a nil l-ideal of R, and R/B (R) is an l-B sem is imple ring.

(2) R is an l-B sem is imple ring if and only if R is an l-Q sem is imple ring.

Theorem 2 2 The l - Q radical Q(R) coincides w ith the l - B radical B(R) of R, this implies that R is an l - Q radical ring if and only if R is an l - B radical ring.

Proof It is easy to prove that Q(R) = B(R) via transfinite induction

From [5, Example 3 19] we already know that the union N(R) of all the nilpotent l-ideals of R may not be nilpotent, although it must be nil Furthermore, [3, p46, Example 8] shows that R/N(R) may have nonzero nilpotent l-ideals. It also shows that the l-Q radical and the l-radical of R are in general, different

For d -rings a much stronger statement can be made

An f -ring is an l-ring in which

$$a b = 0$$
 and $c \ge 0$ imply $ca b = ac b = 0$

An important identity satisfied by any f -ring is |xy| = |x| |y| ([3, p57, Corollary 1]). An l-ring satisfying this identity is usually called a distributive l-ring or d-ring. So any f-ring is a d-ring, but there is a d-ring which is not an f-ring ([3, p59]).

Theorem 2 3 If R is a d-ring, then the l-Q radical Q(R) of R is the set of all nilpotent elements of R.

Proof \underline{L} et $\overline{R} = R/Q(R)$. Clearly \overline{R} is a d-ring Suppose that \overline{a} \overline{R} and $\overline{aR} = \overline{0}$. Then \overline{a} $N(\overline{R})$ $\subseteq Q(\overline{R}) = \{\overline{0}\}$ by the definition of l-radical N(R) [3, p45, Definition] and Theorem 2.1 (2). Hence \overline{R} is an f-ring by [3, p58-59, Lemma 1 and Theorem 14]. Suppose that x = R and $x^n = \overline{0}$. Then $\overline{x^n} = \overline{0}$ and $\overline{x} = \overline{0}$. Then $\overline{x} = \overline{0}$ and $\overline{x} = \overline{0}$ and

Corollary If R is a d-ring, then R/Q (R) is an f-ring.

3 The P- radical of R and l-Q sem is imple rings

In this section we give a comprehensive characterization of the P-radical introduced in [4] and show the structure theorem of l - Q sem is imple rings. In order to do this we need the following

A useful proposition follows directly from Proposition 2 3 and this definition

Proposition 3 1 The following statements are equivalent

- (1) R is an l Q sem is imple ring.
- (2) R is an l-B sem is imple ring.
- (3) R is an l-sem ip rim e l-ring.

 $W \ e \ m \ ay \ characterize \ Q \ (R) \ as \ follow \ s$

Theorem 3 1 The l - Q radical Q(R) of R coincides w ith the intersection of all l-sem ip r in e l-ideals $A \cap R$.

Proof Let $N = \{A \alpha lp \ ha$: $A \alpha lp \ ha$ is an l-sem ip rime l-ideal of R $\}$. By Theorem 2 1 (2) and Proposition 3 1, Q(R) is an l-sem ip rime l-ideal, thus $N \subseteq Q(R)$. A ssume B / N is a nilpotent l-ideal of R / N, since $(B + A \alpha) / A \alpha B / (A \alpha B) (B / N) / ((A \alpha B) / N)$, $(B + A \alpha) / A \alpha$ is a nilpotent l-ideal, so $B \subseteq A \alpha$ and $B \subseteq N$. Applying Proposition 3 1, R / N is an l-Q sem is imple ring But Q(R) / N is an l-Q ideal of R / N by Theorem 2 1 (1) and Proposition 2 1 (3). Whence $Q(R) \subseteq N$. Thus Q(R) = N.

This theorem characterizes the $l \cdot Q$ radical of R and will be used in the rest of the paper. Moreover, we have

Theorem 3 2 The following subsets of R coincide with the P-radical P(R) of R:

- (1) the l Q radical Q(R) of R,
- (2) the l-B radical B(R) of R,
- (3) the intersection of all l-sem ip r in e l-ideals of R.

Proof It is clear that an l-ideal A of R is l-sem ip rime if and only if N (R A) is zero. Using Theorem 2.2 and 3.1, and [4, 2.12], we have $Q(R) = B(R) = \{A \bowtie A \bowtie \text{ is an } l \text{-sem ip rime } l \text{-ideal of } R\} = \{A \bowtie A \bowtie \text{ is an } l \text{-ideal of } R \text{ and } N \text{ } (R /A \bowtie \text{ is zero})\} = P(R)$.

Theorem 3 3 R is an l-Q sem is imple ring if and only if it is a subdirect sum of some l-p ring s

Theorem 3 3 follows directly from Proposition 3 1 and [1, Corollary 8 5 8]

4 l-Q radical rings

In this section we discuss $l \cdot Q$ radical rings in order to obtain the structure of $l \cdot Q$ ideals. The next theorem is a basic result

Theorem 4 1 Every l-ham an orphic image R and every l-subring M of an l-Q radical ring R are l-Q radical rings. In particular, l-ideals of an l-Q radical ring are also l-Q radical rings.

Proof It is easy to see from Theorem 2 1 (3) that R^* is also an l - Q radical ring

It remains to prove M = B(M) by Theorem 3.2 and Definition 2.2 Let N(v) be as in Definition 2.3, S the complementary set of B(M) in M. Clearly S $N(0) = \emptyset$. Now assume S $N(v) = \emptyset$ for each ordinal number v < u. If u is a limit ordinal number, then S $N(u) = \emptyset$ by

the transfinite inductive hypothesis; if u = v + 1 is not a limit ordinal number, then N(u) is the sum of all l-ideals $K ilde{a}$ of R such that $K ilde{a}$ contains N(v) and $K ilde{a} / N(v)$ is nilpotent. A ssum $eM_1 = S$ N(u) is a nonempty set, then there is $a M_1$. Let $a ilde{a}$ and $a ilde{b} e^1$ -ideals generated by $\{a\}$ in M and in R respectively. Since $a M_1$, there exist $ilde{a}$ and a positive integer n such that $a^n ilde{\subseteq} K^n ilde{a} = N(v)$, hence $a^n ilde{\subseteq} M$ N(v) from $a ilde{a} = a$. But since $S N(v) = ilde{\emptyset}$ by the transfinite inductive hypothesis, then $a^n ilde{\subseteq} M$ N(v) = B(M) N(v) = B(M). Applying Theorem 3.2 we obtain $a ilde{\subseteq} B(M)$ and a B(M) S, which contradicts the choice of S, thus $M ilde{\subseteq} N(u)$ $S = ilde{\emptyset}$. Whence $S R(v) = ilde{\emptyset}$ via transfinite induction. Since R = R(v), $S = S M \subseteq S R = S R(v) = ilde{\emptyset}$. Therefore M = R(v).

Definition 4 1 Let X be a nonempty subset of R, the left l-annihilator of X in R is $l(X) = \{r \mid R : |r|_{X} = 0 \text{ for each } x \in X\}$.

A similar definition can be made for right l-annihilator.

Proposition 4 1 (1) Suppose that X is a nonempty subset of R, if |x| = X for each x = X, then the left (right) l-annihilator of X in R is a left (right) l-ideal of R.

- (2) The left (right) l-annihilator of a left (right) l-ideal of R in R is an l-ideal of R.
- **Theorem 4 2** (1) Any l-ideal A of an l-Q sem is imple ring R is also an l-Q sem is imple ring.
- (2) If A is an l-ideal of R contained in the l-Q radical Q(R) of R, then the l-Q radical of R/A is Q(R)/A.

Proof It is immediate from Proposition 3 1 and 4 1, and Theorem 3 1 and 2 1. Next we discuss the structure of $l \cdot Q$ radical rings and $l \cdot Q$ ideals

Theorem 4 3A left (right, wo-sided) l-idealA of R is a left (right, wo-sided) l-Q ideal if and only if A is an l-Q radical ring.

Proof Sufficiency. W ithout loss of generality we now assume only that A is a nonzero left l-ideal Let M be any l-ideal of R, and A be not contained in M. Then $A^* = (A + M) / M$ is a nonzero left l-ideal of $R^* = R / M$. U sing the hypothesis that A is an l-Q radical ring, Theorem 4.1 and $A / (A - M) / M = A^*$, we have that A^* is an l-Q radical ring. A ssume that B^* is the right l-annihilator of A^* in A^* , then $B^{*2} \subseteq A^* B^* = \{0^*\}$, clearly B^* is a nilpotent l-ideal of A^* by Proposition 4.1. If $B^* = A^*$, then A^* is a left l-Q ideal of A^* ; if $B^* = A^*$, from Theorem 2.1. (3) we may assume that L^* is a nonzero nilpotent l-ideal of A^* is A^* . Let A^* be the natural l-homomorphism of A^* onto A^* , and A^* is a nilpotent, and A^* in A^* . Hence by Proposition 1.1. (4) the l-ideal A^* is a nonzero nilpotent left l-ideal of R^* . It follows from Definition 2.1 that A^* is a left l-Q ideal of R^* .

Necessity. A ssume first that A is a two-sided l-Q ideal Let I be an l-ideal of A with I-A. We will show that the l-ring A/I contains a nonzero nilpotent l-ideal Let Q = (all l-ideals of R that are contained in I). It is easily seen that Q is an l-ideal of R and that $Q \subseteq I$. Since A is an l-Q ideal, there is an l-ideal L of R such that $Q \subseteq L \subseteq A + Q = A$, L/ $Q \subseteq A$

Q)/Q and L/Q is a nonzero nilpotent l-ideal of R/Q. Now $L \nsubseteq I$, since otherwise, we would have $L \subseteq Q$ and that L/Q is the zero l-ideal in R/Q. So (L+I)/I is a nonzero l-ideal in A/I. Since L/Q is nilpotent in R/Q, there is a positive integer n such that $(L/Q)^n = 0$ in R/Q. So $L^n \subseteq Q \subseteq I$. This implies (L+I)/I is nilpotent in A/I. Since I was chosen arbitrarily, we have shown that any l-homomorphic image of A contains a nonzero nilpotent l-ideal. Thus by Theorem 2.1 (3), A is an l-Q radical ring.

Next assume that A is a left (right) $l \cdot Q$ ideal. Then by Proposition 2.2, A can be embedded in the $l \cdot Q$ ideal A + AR (A + RA). By our previous discussions, A + AR (A + RA) is an $l \cdot Q$ radical ring. Now A is an $l \cdot S$ subring of A + AR (A + RA). By Theorem 4.1, A is an $l \cdot Q$ radical ring.

Theorem 4 4 (1) The l-Q radical Q(R) of R and every l-subring of Q(R) are also l-Q radical rings

- (2) Every left (right, or two-sided) l-ideal A of R is a left (right, or two-sided) l-Q ideal of R if and only if A is contained in Q(R).
 - (3) If A is an l-ideal of R, then Q(A) = Q(R) A.

Proof The proof of Part (1) is immediate from Theorem 2 1 (1), Theorem s 4 3 and 4 1.

(2) Necessity. It follows immediately from Theorem 2 1 (1).

Sufficiency. Since $A \subseteq Q(R)$, by Part (1), we know that A is an $l \cdot Q$ radical ring. Hence by Theorem 4 3A is a left (right, or two-sided) $l \cdot Q$ ideal of R.

(3) U sing part (1), Theorem 4 3, and part (2), we have Q(R) $A \subseteq Q(A)$. On the other hand, by Theorem 2 1 (2) and 4 2 (1), we have that A/(A = Q(R)) (A + Q(R))/Q(R) is an l-Q sem is imple ring. It follows from Proposition 3 1 and Theorem 3 1 that $Q(A) \subseteq A = Q(R)$. Hence (3) holds

Corollary If M is an l-subring of R, then $Q(M) \supseteq Q(R)$ M. (namely $B(M) \supseteq B(R)$ M)

Theorem 4 5 If an l-ring R is an l-hom om or phic in age of R ($R \supseteq Q \cap R$) and $K = \ker Q \subseteq Q \cap R$, then an l-ideal $A \supseteq K$ of R is the l-Q radical of R if and only if $Q \cap R \cap Q$ is the l-Q radical of R.

Proof Immediate

5. l-Q radical for full matrix lattice- ordered rings

The purpose of this section is to discuss the $l \cdot Q$ radical of full matrix lattice-ordered rings (full l matrix l-rings).

Theorem 5 1 An l-ring R w ithout identity can be an bedded naturally in an l-ring R ow ith identity such that

- (1) Every left (right, two-sided) l-ideal A of R is also a left (right, two-sided) l-ideal of R_0 .
 - (2) A is a nil (nilpotent) l-ideal of R if and only if A is a nil (nilpotent) l-ideal of R o.
 - (3) If A is an l Q ideal of R, then A is also an l Q ideal of R_0 .

(4) The l - Q radical Q(R) of R coincides w ith the l - Q radical $Q(R_0)$ of R_0 .

Proof Let $R_0 = \{a + ne \mid a = R, n \text{ is an integer}\}$, then R_0 can be made to be an l-ring with identity e in which R is an l-subring, by defining

```
i a + ne = b + me if and only if a = b, m = n;

a + ne R if and only if n = 0

ii (a + ne) + (b + me) = (a + b) + (n + m)e

iii (a + ne) (b + me) = ab + nb + ma + nme

iv a + ne \le b + me if and only if a \le b, n \le m.
```

There is no loss of generality in assuming that A is a left l-ideal of R. For all x = a + ne R_0 , b A and $|a + ne| \le |b|$, then we have (a + ne) $(-a - ne) = |a| + \max\{n, -n\}e \le |b|$. It follows that $|a| \le |b|$ and n = 0, that is x = a A. Hence (1) holds by iii

- (2) The necessity is immediate from (1). The converse is trivial since for any x = a + ne A, there exists a positive integer k such that $(a + ne)^k = 0$, by i- iv, we have n = 0. It follows that $A \subseteq R$. This completes the proof of (2).
- (3) Since A is an l-Q ideal of R, A is an l-ideal of R oby (1). If M o is an l-ideal of R ow ith $A \nsubseteq M$ o, then M = M o $R \nsupseteq A$, and $(A + M) \not M$ contains a nonzero nilpotent l-ideal $B \not M$ of $R \not M$. It follows that B sup set M and B M, $B \nsubseteq M$ o and B M or $B \not M$ is a nonzero nilpotent B-ideal of B of B or B or B ideal of B or B or B is an B-Q ideal of B or B or B is an B-Q ideal of B or B or B is an B-Q ideal of B or B or B is an B-Q ideal of B or B or B ideal of B ideal of B or B ideal of B ideal o
- (4) It is clear from Theorem 2 1 (1) and Part (3) that $Q(R) \subseteq Q(R_0)$. Conversely, suppose that $B_0/Q(R)$ is a nilpotent l-ideal of $R_0/Q(R)$, then $(B_0-R)/Q(R)$ is a nilpotent l-ideal of R/Q(R). Therefore $B_0-R=Q(R)$ by Theorem 2 1 (2), Proposition 3 1 and Definition 3 1. Since $B_0/Q(R)$ is nilpotent, it follows from i- iv that $B_0\subseteq R$. Thus $R_0/Q(R)$ is an l-sem ip rime l-ring. By Theorem 3 1 this implies $Q(R_0)\subseteq Q(R)$. Hence (4) holds

Let R_n be the full matrix ring of all $n \times n$ matrices $Y = (y_{ij})$ over an l-ring R. Then, by defining $Y \le Z$ to mean that $y_{ij} \le z_{ij}$ for all i, j = 1, 2, ..., n, we get an l-ring, which is called a full l-matrix l-ring over R.

Suppose η is an l-homomorphism of an l-ring R into an l-ring S. Then $\eta: R_n \to S_n$ is the ring homomorphism induced by η on the full l-matrix l-ring. That is $\eta_i(y_{ij}) = (\eta(y_{ij}))$.

Lemma 5 1 Let η_{be} a surjective l-ham an orphism of R onto S, and let $ker \eta = A$. Then η_{i} is a surjective l-ham an orphism of R_n onto S_n , and $ker \eta_i = A_n$. That is $R_n/A_n = S_n = (R/A)_n$.

Theorem 5 2 L et R be an l-ring w ith identity e, A an l-ideal of R, and let A n denote the set of $n \times n$ m atrices w ith entrices in A. Then

- (1) The map $A \rightarrow A_n$ is a bijective map of the set of l-ideals in R onto the set of l-ideals in R_n .
- (2) A is a nilpotent l-ideal of R if and only if A_n is a nilpotent l-ideal of R_n .
- (3) A is an $l \cdot Q$ ideal of R if and only if A n is an $l \cdot Q$ ideal of R n.
- (4) A is an l-prime l-ideal of R if and only if A_n is an l-prime l-ideal of R_n .
- (5) A is an l-sem ip rime l-ideal of R if and only if A_n is an l-sem ip rime l-ideal of R_n .

- **Proof** (1) It is evident that if A is an l-ideal of R, then A_n is an l-ideal of R_n . Conversely, assume that K is an l-ideal of R_n . Then, by [6, p471, Proposition 7], there exists a ring ideal N of R such that $K = N_n$. For any x = R, $a = N_n$, and $|x| \le |a|$, we have $aE = N_n$ and $|xE| \le |aE|$, where E is the unit matrix, or identity, of R_n . Since $K = N_n$ is an l-ideal of R_n , there is $xE = N_n$. It follows that N is an l-ideal of R.
- (2) If A is a nilpotent l-ideal, then there exists a positive integer k such that $A^k = \{0\}$. Hence $(A_n)^k = \{(0)\}$, where (0) is the $n \times n$ matrix whose entries are all 0. Conversely, if A_n is a nilpotent l-ideal of R_n , that is $(A_n)^k = \{(0)\}$, then for any $a_1, a_2, ..., a_k = A$, (0) = $(a_1E)(a_2E)...(a_kE) = (a_1a_2...a_k)E$. It follows that $A^k = \{0\}$.
- (3) Suppose that A_n is an $l ext{-}Q$ ideal of R_n . Take any l-ideal M of R with $A \not\subseteq M$, then $A_n \not\subseteq M_n$ by (1). Hence $(A_n + M_n) \not M_n$ contains a nonzero nilpotent l-ideal $B_n \not M_n$ of $R_n \not M_n$. Since $(B \not M_n)_n B_n \not M_n \subseteq (A_n + M_n) \not M_n = (A_n + M_n) \not M_n = (A_n + M_n) \not M_n = (A_n + M_n) \not M_n$ is nilpotent. Thus A is an $l ext{-}Q$ ideal of R. Similarly, the converse holds
 - (4) We first show the following fact:

$$I_n J_n = (IJ)_n = IJ_n \tag{*}$$

for every pair of l-ideals I, J of R. Since $I_n J_n \subseteq (IJ)_n \subseteq IJ_n$, $I_n J_n \subseteq (IJ)_n \subseteq IJ_n = IJ_n$. Conversely, for every $Y = (y_{ij})$ IJ_n , there are y_{ij} IJ_n , i, j = 1, 2, ..., n. By [5, p169] there exist a_{ij} I_n , b_{ij} I_n such that $|y_{ij}| \leq a_{ij}b_{ij}$, hence $|Y| = (|y_{ij}|) \leq (a_{ij}b_{ij}) = \{i, j\}(a_{ij}E_{ij})(b_{ij}E_{ij})$ $I_n J_n$, where E_{ij} is the $n \times n$ matrix with (i, j)-entry e and all other entries 0. This implies Y $I_n J_n$. Thus (*) holds From (1), [4, pp. 71- 72] and (*) we can easily obtain that A is an l-prime l-ideal of R if and only if A_n is an l-prime l-ideal of R_n .

(5) It is immediate from Part (1) and (2) and Lemma 5. 1.

Corollary If R is an l-ring w ith identity, then the l-Q radical of R_n is the set of all $n \times nm$ atrices w ith entries in the l-Q radical of R. That is $Q(R_n) = (Q(R))_n$.

Theorem 5. 3 For any l-ring R, the l-Q radical $Q(R_n)$ of R_n is the full l-m atrix l-ring $(Q(R))_n$ over the l-Q radical Q(R) of R. That is $Q(R_n) = (Q(R))_n$.

Proof It is suffices to consider the case R without identity, by Corollary of Theorem 5. 2. From Theorem 5. 1, R can be embedded in an l-ring R with identity in which R is an l-ideal of R and Q(R) = Q(R). Then, by Theorem 5. 2 and its Corollary, R_n is an l-ideal of R_n and

$$Q(\overline{R}_n) = (Q(\overline{R}))_n = (Q(R))_n \subseteq R_n$$

By Theorem 4 4 (1) and (3) we obtain $Q(\overline{R}_n) = Q(Q(\overline{R}_n)) \subseteq Q(R_n)$; By Theorem 4 4 (3) we get $Q(R_n) \subseteq Q(\overline{R}_n)$. Whence $Q(R_n) = Q(\overline{R}_n) = Q(R)$.

References

- [1] A. Bigard, K. Kein el and S. Wolfenstein, Groupes et Anneaux Reticules, Springer-Verlag, 1977.
- [2] G. Birkhoff, Lattice Theory, (3rd ed.) Am. Math. Soc. Providence, 1967.
- [3] G. Birkhoff and R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ci., 28(1956), 41-69.

[4] J. E. Diem, A radical for lattice-ordered rings, Pac. J. Math., 25(1968), 71-82

 $[5] \, D. \, G \, Johnson, \, A \, \, structure \, theory \, for \, a \, class \, of \, \, lattice- \, ordered \, ring \, s, A \, cta \, \, M \, ath \, \, , \, \, 104 \, (1960) \, , \, \, 163- \, \, 215 \, .$

[6] B. J. Xie, A bstract A lgebra }, Shanghai Science and Technology Press, 1982 (In Chinese).

格序环的一个根的结构

高 亭 (河北师范大学数学系、石家庄050016)

摘 要

从不同角度刻画了格序环R 的 P- 根和 l-B 根,并对 l-Q 根环进行了讨论 揭示了R 及 R 上的全矩阵环R_R 的 l-Q 根, l-Q 理想,素 l-理想,半素 l-理想之间的关系