R ig id ity Theorem s of R iemann ian M an if old with $\nabla^2 \mathbf{R} \mathbf{ic} = 0^*$

X u S enlin Mei Jiaqiang
(Dept of Math, Univ. of Sci and Tech of China, Hefei 230026)

Abstract Ricci curvature tensor is denoted by Ric We study when the manifold which satisfy $\nabla^2 R$ ic= 0 become a Einstein manifold or a space form.

Keywords Ricci curvature tensor, Riemann curvature tensor, Einstein space, weyl conformal curvature tensor, scalar curvature

ClassificationAM S (1991) 53C40/CCL O 186 16

1 Introduction

Compact R iem annian manifolds whose R icci curvature tensors are parallel have been studied in [1], the following two theorems are obtained by the authors of [1]:

Theorem A Suppose M^n is a compact manifold, $\nabla^2 R$ ic= 0, Scalar curvature R = n(n-1). If $2n(n-1) \le R_M^2 < 2n(n-1) + (\frac{n}{3+\sqrt{n-2}})^2$, then M is a space form.

Theorem B Suppose M^n is a compact Einstein manifold, scalar curvature R = n(n-1). If $0 \le W_M^2 < \frac{4}{9}n(n-1)$, then M is a space form.

 R_M and W_M in theorem A, B denote R iem ann curvature tensor and W eyl conformal curvature tensor respectively. We will establish similar theorems on manifolds satisfy $\nabla^2 R$ ic = 0 and find best constants for theorem A, B. We will also develop some rigidity theorems which observed in [2], [3].

2 Preliminaries

Suppose M is a complete manifold of dimension n. $\{w_1, ..., w_n\}$ are local orthonormal frames W e have structure equations:

$$dw_i = -\sum_j w_{ij} \Delta w_j, \qquad (1)$$

$$dw_{ij} = -\sum_{i} w_{ik} \Lambda_{ik} w_{kj} + \Omega_{ij}, \qquad (2)$$

^{*} Received July 5, 1995. Priject supported by NN SFC and NECYSFC.

where $\Omega_{ij} = \frac{1}{2} \sum_{k, l} R_{ijkll} M_k \Delta_{ll} M_{ll}$, R_{ijkl} are R iemann curvature tensors of M. The indexes range from 1 to n.

Ricci curvature are defined by $R_{ij} = \sum_{i} R_{iiij}$. The covariant derivative are defined by

$$\sum_{k} R_{ij, kW k} = dR_{ij} - \sum_{m} R_{mW m i} - \sum_{m} R_{imW m j},$$
 (3)

$$\sum_{l} R_{ij,k} w_{l} = dR_{ij,k} - \sum_{m} R_{mj,k} w_{mi} - \sum_{m} R_{im,k} w_{mj} - \sum_{m} R_{ij,m} w_{mk}, \qquad (4)$$

 $\nabla^2 R$ ic= 0 denotes $R_{ij,kl} = 0$. From (3), (4) we have Ricci identity

$$\sum_{m} R_{mj} R_{mikl} + \sum_{m} R_{im} R_{mjkl} = 0$$

If we choose good frames so that $n \times n$ matrix (R_{ij}) is diagonal, then

$$(R_{ii} - R_{ii}) \cdot R_{iikl} = 0 \tag{5}$$

(5) is very useful

Lemma 1 If M is connected, $\nabla^2 R$ ic= 0; then the scalar curvature R is a constant

Proof From (3), (4) and $R = \sum_{i} R_{ii}$, $\nabla^{2} R_{ic} = 0$, we have

$$\sum_{k} R_{,m} w_{k} = dR, \qquad (6)$$

$$dR_{,k} - \sum_{m} R_{,m} w_{mk} = 0, (7)$$

Taking exterior differential calculus on (7), by (2) we have

$$0 = d dR_{,k} = \sum_{i} dR_{,m} \Lambda_{W_{i}m_{k}} + \sum_{m} R_{,m} (-\sum_{i} w_{m_{i}i} \Lambda_{W_{ik}} + \Omega_{m_{k}}).$$

By (7) we have

$$\sum_{m} R_{,m} \Omega_{mk} = 0,$$

$$\sum R_{,m}R_{mkij} = 0 \tag{8}$$

U sing Bianchi identity

$$R_{ijkl,m} + R_{ijlm,k} + R_{ijmk,l} = 0$$

and $\nabla^2 R$ ic= 0, by (8) we have

$$\sum_{m} R_{,m} R_{ijkl,m} = 0$$

Since $R = \sum_{ij} R_{ijij}$, we have

$$\sum_{m} R_{,m} R_{,m} = 0$$

From (6) we have dR = 0, R is a constant for connectivity of M.

Suppose λ is a constant, define

$$D_{ijkl} = R_{ijkl} - \lambda (\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}).$$

D ijki have the following qualities:

$$D^{2} = \sum_{i,j,k,l} D_{ijkl}^{2} = R_{m}^{2} + 2\lambda^{2} n (n-1) - 4\lambda R, \qquad (9)$$

$$D_{ijkl,m} + D_{ijmk,1} + D_{ijlm,k} = 0, (10)$$

$$\sum_{i} D_{ijil} = R_{jl} - (n-1) \lambda \delta_{jl}$$
 (11)

Letting i = m in (10), by (11) we have

$$\sum_{m} D_{mjkl,m} + R_{jk,l} - R_{jl,k} = 0$$

U sing $\nabla^2 \mathbf{R}$ ic= 0 we have

$$\sum_{m} D_{ijkm,ml} = 0 \tag{12}$$

From (10) we have

$$\sum_{m} D_{ijkl,mm} = \sum_{m} R_{ijkm,m} + \sum_{m} R_{ijml,km}.$$

Then

$$\frac{1}{2}\Delta D^{2} = \sum_{i,j,k,l,m} D^{2}_{ijkl,m} + D_{ijkl}D_{ijkl,mm}$$

$$= \nabla D^{2} + 2 \sum_{i,j,k,l,m} D_{ijkl}D_{ijkm,lm}$$

$$= \nabla D^{2} + 2 \sum_{i,j,k,l,m} D_{ijkl}(D_{ijkm,lm} - D_{ijkm,ml})$$

$$= \nabla D^{2} + 2 \sum_{i,j,k,l,m} D_{ijkl}(D_{hjkm}R_{hilm} + D_{ilhkm}R_{hjlm}$$

$$+ D_{ijlm}R_{hklm} + D_{ijkh}R_{hl}). \tag{13}$$

U sing the method in [1], we have

$$\frac{1}{4} \nabla D^{-2} \ge \frac{1}{2} \nabla D^{-2} + \frac{n}{2} \lambda D^{-2} - \frac{1}{2} (\sqrt{n-2} + 3) D^{-3}. \tag{14}$$

If M is a Einstein manifold whose Ricci curvature is $(n - 1)\lambda$, then

$$\frac{1}{4} \quad D^{-2} \ge \frac{1}{2} \quad \nabla D^{-2} + (n-1)\lambda \quad D^{-2} - (\frac{1}{2} + \frac{n-2}{\sqrt{n(n-1)}}) \quad D^{-3}. \tag{15}$$

One can obtain theorem A, B by (13), (14).

3 Pinching Problems

We will consider the condition for M to become a Einstein manifold. First we have **Theorem** 1 Suppose M is a complete manifold of dimension $n \ge 3$, M is connected, $\nabla^2 R$ ic = 0. Scalar curvature R 0 If

$$R_M$$
 $^2 \le \frac{2R^2}{(n-1)(n-2)}$

then M is a Einstein manifold or $R_M^2 = \frac{2R^2}{(n-1)(n-2)}$. And $R_M^2 = \frac{2R^2}{(n-1)(n-2)}$ implies that the universal covering space of M is isometry to $M^{n-1}(\frac{R^2}{(n-1)(n-2)}) \times \mathbb{R}$ Where $M^{n-1}(\frac{R^2}{(n-1)(n-2)})$ denotes (n-1) - dimensional simply connected space from which sectional curvature is $\frac{R^2}{(n-1)(n-2)}$. \mathbb{R} denotes Euclidean line

Proof From Lemma 1 we know R = const, $\forall_p M$, choose good frames around p such that (5) is true for p. Then the indexes from 1 to n are divided into s group s:

$$\{1, 2, ..., x_1\}, \{x_1 + 1, x_1 + 2, ..., x_1 + x_2\}, ...,$$

$$\leq \left\{\sum_{m=1}^{S-1} x_m + 1, \sum_{m=1}^{S-1} x_m + 2, ..., \sum_{m=1}^{S-1} x_m + x_s\right\}, 1 \leq s \leq n.$$

Suppo se

$$R_{jj} = a_i, \sum_{m=1}^{i-1} x_m + 1 \le j \le \sum_{m=1}^{i-1} x_m + x_i, 1 \le i \le s,$$

and $a_1, a_2, ..., a_s$ are different real numbers From (5) we have

$$R_{iikl} = 0, \quad \forall k, l = 1, 2, ..., n$$
 (16)

if i, j are in different groups

Clearly,

$$\sum_{i=1}^{s} x_i a_i = R, \qquad (17)$$

$$\sum_{i=1}^{s} x_i = n \tag{18}$$

The square length of Ricci tensor is defined by $Ric^2 = \sum_{i=1}^s x_i a_i^2$. If s = 1, then $x_1 = n$, $a_1 = \frac{R}{n}$ and $Ric^2 = \frac{R^2}{n}$. If $s \ge 2$, we will prove $R_M^2 = \frac{2R^2}{(n-1)(n-2)}$. In this case $Ric^2 = \frac{R^2}{n-1}$. From continuity of Ric^2 and connectivity of M we know M is a Einstein manifold or $R_M^2 = \frac{2R^2}{(n-1)(n-2)}$. In fact, suppose $i = \{1, 2, ..., x_1\}$, from (16) we have

$$a_1 = R_{ii} = \sum_{l=1}^{x_1} R_{lili}$$

Then

$$\sum_{l=1}^{x_1} R_{lili}^2 \ge \frac{1}{x_1 - 1} \left(\sum_{l=1}^{x_1} R_{lili} \right)^2 = \frac{a_1^2}{x_1 - 1}$$
 (19)

If $x_1 = 1$, then by (16) we know $a_1 = 0$, define right hand of (19) equal to 0 So

$$\sum_{i,j=1}^{x_1} R_{ijij}^2 \ge \frac{x_1}{x_1 - 1} a_1^2$$

Similarly, we have

$$R_{M} = \sum_{i,j,k,l} R_{ijkl}^{2} \ge 2 \sum_{i=1}^{s} \frac{x_{i}}{x_{i}-1} a_{i}^{2}.$$
 (20)

 $s \ge 2 \text{ imp lies } x_i \le n - 1$, then

$$R_{M} \stackrel{2}{=} \frac{2(n-1)}{n-2} \sum_{i=1}^{s} a_{i}^{2}. \tag{21}$$

From (17), (18) and $s \ge 2$, $x_i = 1$ implies $a_i = 0$, using Cauchy inequality we have

$$\sum_{i=1}^{s} a_i^2 \ge \frac{R^2}{(n-1)^2},\tag{22}$$

and if $\sum_{i=1}^{s} a_i^2 = \frac{R^2}{(n-1)^2}$ then s = 2, $\{x_1, x_2\} = \{n-1, 1\}$.

From (21), (22) we know R_M $^2 \ge \frac{2R^2}{(n-1)(n-2)}$. So from the conditions in theorem

we know R_M $^2 = \frac{2R^2}{(n-1)(n-2)}$. Then we can suppose $x_1 = n-1$, $x_2 = 1$ and $a_1 = \frac{R}{n-1}$,

 $a_2 = 0$. This implies $Ric^2 = x_1 a_1^2 + x_2 a_2^2 = \frac{R^2}{n-1}$.

Now we suppose R_M $^2 = \frac{2R^2}{(n-1)(n-2)}$. From (19), (20) we have

$$-R_{\{ijji\}} = R_{ijij} = \frac{R}{(n-1)(n-2)}, \ 1 \leq i,j \leq n-1, \ i \qquad j,$$

other R_{ijkl} equal to 0 From (13), if $\lambda = 0$, computation gives

$$\nabla R_M$$
 ² = 0,

then M is locally symmetric By De Rham's decomposition theorem in [4], we know the universal covering space of M is isometry to $M^{n-1} = \frac{R}{(n-1)(n-2)} \times \mathbf{R}$

Corollary 1 Under the condition of theorem 1, if R_M $^2 < \frac{2R^2}{(n-1)(n-2)}$, then M must be a E-instein manifold. Specially, if $n \ge 11$, R > 0, M is compact, then M must be a space form.

Proof The first part is from theorem 1. If $n \ge 11$, then

$$\frac{2R^2}{(n-1)(n-2)} \le \frac{2R^2}{n(n-1)} + \left(\frac{R}{n}\right)^2 \left[\frac{1}{2} + \frac{n-2}{\sqrt{n(n-1)}}\right]^{-2},$$

from (9), (15), where $\lambda = \frac{R}{n(n-1)}$. We know that if

$$R_M$$
 $^2 < \frac{2R^2}{n(n-1)} + (\frac{R}{n})^2 [\frac{1}{2} + \frac{n-2}{\sqrt{n(n-1)}}]^{-2},$

then M is a space form. Now the second part is clear

Remark Corollary 1 is better than theorem A. If $n \ge 11$, the pinching constant $\frac{2R^2}{(n-1)(n-2)}$ is the best one

Next we will consider the case that n = 3 or 4

Theorem 2 n=3, $\nabla^2 R$ ic= 0 M is a complete connected manifold, then M is a space form or the universal covering space of M is isometry to $M^2(\frac{R}{2}) \times R$. Where R is the scalar curvature of M.

Proof From Lemma 1 we have R = const If R = 0, from (16), (17), (18) we know R ic = 0. Then M is flat because W eyl conformal curvature tensor of three-manifold is vanishing

If R = 0, from (16), (17), (18) we know (i) s = 1, $x_1 = n$, $a_1 = \frac{R}{n}$ or (ii) s = 2, $\{x_1, x_2\} = \{n - 1, 1\}$, $\{a_1, a_2\} = \{\frac{R}{n - 1}, 0\}$. From the proof of theorem 1 we know M is a Einstein manifold or the universal covering space is isometry to $M^2(\frac{R}{2}) \times \mathbb{R}$. One knows that three dimensional E-

Theorem 3 n=4, $\nabla^2 R$ ic= 0, M is a complete connected manifold. If M is compact, then M is a Einstein manifold or the universal covering space is isometry to $M^3(\frac{R}{6}) \times R$ or $M^2 \times N^2$. where M^2 and M^2 are manifolds whose Gauss curvature are constants, and they are simply connected.

Proof From (16), (17), (18) we know

in stein manifold must be a space form.

(i)
$$s = 1$$
, $R_{11} = R_{22} = R_{33} = R_{44} = \frac{R}{4}$;

(ii)
$$s = 2$$
, $R_{11} = R_{22} = a$, $R_{33} = R_{44} = b$, $a = b$, $a + b = \frac{R}{2}$;

(iii)
$$s = 2$$
, $R_{11} = R_{22} = R_{33} = \frac{R}{3}$, $R_{44} = 0$.

From $\nabla^2 R$ ic= 0 w e know

$$\frac{1}{2}\Delta$$
 R ic $^2 = \nabla R$ ic 2

then R ic $^2 = const because M$ is compact

In case (ii), from (16) we know $R_{1212} = R_{2121} = -R_{1221} = -R_{2112} = a$, $R_{3434} = R_{4343} = -R_{3443} = -R_{4334} = b$, other R_{ijkl} equal to 0. In case (iii), from (16) we know $R_{ijij} = -R_{ijji} = \frac{R}{6}$, $1 \le i, j \le 3$, i = j, other R_{ijkl} equal to 0. From (13), $\lambda = 0$, we have

$$\frac{1}{2}\Delta R_M^2 = \nabla R_M^2$$
 (23)

for both (ii) and (iii).

If (i) happens for some point p = M, then M is a Einstein manifold because Ric ² is the smallest in the three cases Now we suppose (ii) or (iii) is true, then from (23) we know $\nabla R_M = 0$ because M is compact So M is locally symmetric

If (ii) happens for some point p = M, from R ic $^2 = 2(a^2 + b^2) = const$, $a + b = \frac{R}{2} = const$ we know a = const b = const, $R_M = ^2 = 4(a + b)^2 = const \ge \frac{R^2}{2}$. If (iii) happens for some point p = M, then $R_M = ^2 = \frac{R^2}{3} < \frac{R^2}{2}$. So (ii) happens for every point of M or (iii) happens for every point of M because of the connectivity of M. By De Rham's decomposition theorem in [4] we know that the universal covering space is isometry to $M^2 \times N^2$ in the case (ii) or $M^3 \left(\frac{R}{6}\right) \times R$ in the case (iii).

A nother condition also can make M become a Einstein manifold Suppose p M, V denotes (r+1) - dimensional linear space of T_pM . If $\forall V$ and orthogonal unit vectors $\{e_1, ..., e_r\} \subset V$, the following

$$\sum_{i=1}^{r} R_{m} (v, e_{i}, v, e_{i}) > 0$$

is true for every unit vector v V then we say R ic (r) > 0 at p M. Similarly we can define R ic (r) < 0.

Theorem 4 M is a complete R ion annian m anifold of d in ension n, M is connected, $\nabla^2 R$ ic= 0 If R ic (r) > 0 or R ic (r) < 0 for every point of M, where $r = [\frac{n+1}{2}]$, r denotes the integral part of $\frac{n+1}{2}$. Then M is a E instein m anifold. Specially, if the sectional curvature K > 0 or K < 0 for every point of M, then M is a E instein m anifold.

Proof Suppose M is not a Einstein manifold, then $\exists p \ M$, such that $R_{11} \ R_{nn}$. We can suppose $R_{11} = R_{22} = \ldots = R_{1i}$, $R_{jj} = \ldots = R_{nn}$, $1 \le i < j \le n$. From (5) we have

$$R_{1k1k} = 0, \quad i+1 \le k \le n,$$
 (24)

$$R_{nlnl} = 0, \quad 1 \leq l \leq j - 1.$$

Since $(n-1)+(j-1)=(n-1)+(j-i) \ge n$, we can suppose $n-i \ge r=[\frac{n+1}{2}]$. Then from (24) we have

$$\sum_{k=n-r+1}^{n} R_{1k1k} = 0,$$

which contradicts with the condition in the theorem.

If K > 0 or K < 0, clearly Ric (r) > 0 or Ric (r) < 0, the theorem is proved

4 Global Rigidity

We will establish some rigidity theorems similar to [2], [3] for connected manifold which satisfy $\nabla^2 \mathbf{R}$ ic= 0 If M is compact, then V_M denotes the volume of M and d_M denotes the diameter of M. We have Sobolev inequality holds in [5].

$$f \quad \frac{2n}{n-2} \leq c(n) \cdot v_M^{\frac{1}{n}} \cdot [d_M \cdot \nabla f \quad 2 + f \quad 2], \quad \forall f \quad c \quad (M), \tag{25}$$

where c(n) is a constant depending only on n. Define $\sigma = D$, where $\lambda = \frac{R}{n(n-1)}$.

Theorem 5 Suppose M is a compact manifold dimension $n \ge 4$, $\nabla^2 R$ ic= 0 Scalar curvature R = n (n-1). If

$$\sigma \mid_{\frac{n}{2}} < c_1(n) \cdot v_M^{\frac{2}{n}}, c_1(n) = \min\{2\sqrt{\frac{n(n-1)}{n-2}}, \frac{4(n-2)}{3\pi^2 n^2 \cdot c^2(n)}\},$$

then M is a space form.

Proof From the proof of theorem 3 we know $Ric^2 = \text{const}$, then from the proof of theorem 1 we know that if M isn't a Einstein manifold then $R_M^2 \ge 2 \cdot \frac{n-1}{n-2} \cdot n^2$. From (9) we have

$$\sigma \ge \sqrt{2 \cdot \frac{n-1}{n-2} n^2 - 2n(n-1)} = 2\sqrt{\frac{n(n-1)}{n-2}}.$$

So M is a Einstein manifold under the condition of the theorem.

From (15) we have

$$\Delta \sigma + 3\sigma^2 - 2(n-1)\sigma \ge 0 \tag{26}$$

Multiply (26) by $\sigma^{\frac{n-2}{2}}$. Integration by parts gives

$$3 {}_{M} \sigma^{\bullet} \sigma^{\frac{n}{2}} \ge 2(n-1) \bullet {}_{M} \sigma^{\frac{n}{2}} + \frac{n-2}{2} {}_{M} \sigma^{\frac{n}{2}-2} (\nabla \sigma)^{2}$$
$$= 2(n-1) \bullet {}_{M} \sigma^{\frac{n}{2}} + \frac{8(n-2)}{n^{2}} {}_{M} |\nabla \sigma^{\frac{n}{4}}|^{2}.$$

Applying Holder's inequality, σ^{\bullet} $\sigma^{\underline{\bullet}} \leq (\int_{M} \sigma^{\underline{\bullet}})^{\frac{2}{n}} \cdot (\int_{M} \sigma^{\underline{\bullet}} \cdot \frac{n}{n-2})^{\frac{n-2}{n}}$, from (25) we have

$$6c^{2}(n) \left(\int_{M}^{\infty} \sigma^{2} \right)^{\frac{2}{n}} \cdot \sqrt{M}^{\frac{2}{n}} \cdot \left(d_{M}^{2} \cdot \int_{M}^{\infty} \left| \nabla \sigma^{4} \right|^{2} + \int_{M}^{\infty} \sigma^{2} \right)$$

$$\geq 2(n-1) \int_{M} \sigma^{\frac{n}{2}} + \frac{8(n-2)}{n^{2}} \int_{M} |\nabla \sigma^{\frac{n}{4}}|^{2}.$$

Applying M yer's theorem, $d_M \leq \pi$. Then if $(\int_{M}^{\pi} \sigma^{\frac{n}{2}})^{\frac{2}{n}} \cdot v_M^{\frac{2}{n}} \leq \frac{4(n-2)}{3\pi^2 n^2 c^2(n)}$, then $\int_{M}^{\pi} \sigma^{\frac{n}{2}} = 0$, $\sigma = 0$, M is a space form.

Theorem 6 Suppose M is a compact m and m of d in ension $n \ge 4$, $\nabla^2 R$ is $n \le 0$, scalar curvature R = -n(n-1). Then give D > 0, $\exists \epsilon \in \epsilon(n,D)$, such that if $d \le D$ and $m \circ \sigma^2 \le v \le \epsilon$ then $\sigma \in 0$, M is a space f om.

Proof Suppose $\epsilon < [2\sqrt{\frac{n(n-1)}{n-2}}]^{\frac{n}{2}}$, from the proof of theorem 5, we know M is a Einstein manifold. Now from theorem 4 in [3], the conclusion is clear.

Theorem 7 Suppose M is an open m and m of d in ension $n \ge 10$, $\nabla^2 R$ ic= 0, scalar curvature R = -n(n-1), if $\sigma \le \frac{(n-1)(n-9)}{(n-1)^2+12} \cdot (1-\frac{1}{9}e^2)$ and for some p oint p M, $\lim_{r \to \infty} e^{-\delta_n \cdot r} B(p,r) \sigma^2 = 0$, where $\delta_n = \frac{1}{3}\sqrt{(n-1)(n-9)}$ and B(p,r) denotes the geodesic ball of radius r around p, then σ 0, M is a space f om.

Proof Take $\epsilon = \frac{(n-1)(n-9)}{(n-1)^2+12} \bullet (1-\frac{1}{9}e^2)$. Then if $\sigma \le \epsilon$, the sectional curvature K satisfies

$$K \leq - (1 - \epsilon) < 0$$

From theorem 4 we know M is a Einstein manifold From (15) we have

$$\Delta \sigma + 3\sigma^2 + 2(n - 1)\sigma \ge 0$$

So

$$\Delta \sigma + (3\epsilon + 2(n-1))\sigma \ge 0 \tag{27}$$

Multiply (27) by σ^n , where η is a cut off function with compact support in M. Integration by parts gives

$$(3\epsilon + 2(n-1)) \left| (\sigma \eta)^2 \ge \left| \nabla (\sigma \eta) \right|^2 - \left| \nabla \eta \right|^2 \sigma^2. \tag{28}$$

By [6] we have

$$|\nabla (\sigma \eta)|^2 \sigma^2 \ge \frac{1}{4} (n-1)^2 (1-\epsilon) |_{M} (\sigma \eta)^2.$$

By (28) we have

$$|\nabla \eta|^{2} \sigma^{2} \geq \left[\frac{1}{4}(n-1)(n-9) - (\frac{1}{4}(n-1)^{2} + 3) \cdot \epsilon\right] \cdot (\sigma \eta)^{2}$$

$$= \frac{1}{4} e^{2} \delta(n) (\sigma \eta)^{2}.$$

Choosing $\eta(x) = \eta(d(p,x))$, where d(p,x) denotes distant function

$$\eta(t) = \begin{cases}
1, & t \leq r, \\
\frac{R - t}{R - r}, & r \leq t \leq R, \\
0, & t \geq R.
\end{cases}$$

We obtained by (29)

$$\frac{1}{(R-r)^2} \int_{B(p,R)} \sigma^2 \ge \frac{1}{4} e^2 \sigma^2(n) \int_{B(p,r)} \sigma^2.$$
 (30)

For any $r_0 > 0$, take $r_j = 2\sigma^{-1}(n) \cdot j + r_0$, $j \ge 0$, it then follows from (30) that

$${}_{B\ (p,\ r_j)} \sigma^2 \geq \ e^2 {}_{B\ (p,\ r_{j-1})} \sigma^2 \geq \ e^{2j} {}_{B\ (p,\ r_{0})} \sigma^2 = \ e^{\sigma(n)\ (r_{j}-r_{0})} \ \sigma^2,$$

$$B(p, r_0) \} \sigma^2 \leq e^{-\sigma(n) (r_j - r_0)} \bullet B(p, r_s) \sigma^2.$$

Letting r_j + , One obtains σ 0 on $B(p, r_0)$. It's easy to see σ 0 on M. i.e., M is a space form.

The authors don't know the case R = 0. Perhaps there is no general rigidity theorems in this case

References

- [1] Li Anm in and Zhao Guo song, Isolation phenomena on Riemannian manifold whose Ricci curvature tensors are parellel, Acta Mathematic Sinica (in Chinese), 1(1994), 19—24.
- [2] Z Shen Some rigidity phenomena for Einstein metrics, proc Amer Math Soc, 108 (1990), 981—987.
- [3] Z Shen, Rigidity theorems for nonpositive Einstein metrics, Proc Amer Math Soc, 116 (1992), 1107—1114.
- [4] S. Kobayashi and K. Nomizu, Foundation of D iff erential Geometry, New york interscience, Vol I (1963), 187—192
- [5] P. Berard, From vanishing theorems to estimating theorems: the Bochner technique revisited, Bull Amer Math. Soc., 19(1988), 371—406
- [6] H. P. Mckean, An upper bound to the spectrum on a manifold of negative curvature, J. Differential Grom., 4(1970), 359—366

▽ ²R ic= 0 的 R iem ann 流形的刚性定理

徐森林 梅加强 (中国科技大学数学系, 合肥 230026)

摘 要

本文用 R ic 表示里奇曲率张量, 研究了 \triangledown R ic= 0 的黎曼流形什么时候成为爱因斯坦流形或空间形式