The Total Chromatic Number of Graphs with an Unique Major Vertex of Degree Four

 $\label{eq:conditional} X\ u\ B\ aog\ ang$ (Dept of M ath , Shandong U niversity, Jinan 250100)

Abstract The total chromatic number $X_r(G)$ of a graph G is the least number k such that G admits a total coloring W ith k colors. In this paper, it is proved that $X_r(G) = \Delta(G) + 1$ for all graphs W ith an unique major vertex of degree 4

Keywords graph, total coloring, major vertex **Classification** AM S (1991) 05C 15/CCL O 157. 5

1 Introduction

All graphs in this paper are finite and simple Undefined signs and concepts can be found in [1].

Given a graph G, $N_G(v)$, $d_G(v)$ and $\Delta(G)$ denote the neighbour set of a vertex v in G, the degree of v in G and the maximum degree of vertices of G, respectively. For any two elements u and v in V(G) E(G), we say that u and v cover each other if u and v are adjacent or incident, and say that u and v are independent to each other otherwise. A subset S of S of S is called an independent set of S if all elements of S are mutually independent. A subset S of S is called a perfect matching of S if S is an independent set of S and covers all vertices of S. We say a vertex S of a graph S is a S - S vertex in S if S and say S is a major vertex of S if S if S if S and S is a major vertex of S if S if S in S i

For an edge uv = E(G) and a vertex w = V(G), graph H = G - uv + uw + vw is called an edge-subdivision of G. If two graphs G_1 and G_2 can be constructed from a same graph G by a serials of edge-subdivision, then we say that G_1 and G_2 are homeomorphic to each other

A k-total-coloring of a graph G is an assignment of k colors to V(G) E(G) such that no adjacent elements or incident elements receive the same color. Let σ be a k-total coloring of a graph G and v be a vertex of G, we use $C_{\sigma}(v)$ to denotes the set of colors assigned to v or the edges incident V in V. The total chromatic number V is V of a graph V is the least number V such that V

^{*}Received July 11, 1995. Supported by the National Natural Science Foundation of China and the Doctorial Programme Foundation of State Education Commission of China

admits a k-total coloring. A famous conjecture named total coloring conjecture^[2] claims that $\Delta(G) + 1 \leq \chi_T(G) \leq \Delta(G) + 2$ for any graph G.

In [3], Zhang Zhongfu and W ang Jianfang proposed a new conjecture about total coloring. Conjecture 1 $\chi_r(G) = \Delta(G) + 1$ for all graphs with an unique major vertex.

Given a graph G, if we add a new edge to E(G) by joining a vertex $v \not N(G)$ to a major vertex of G, then the new graph has an unique major vertex. So, this conjecture 1 implies total coloring conjecture

It is very easy to verify that Conjecture 1 holds for graphs of maximum degree 3 and bipartite graphs In this paper, it is proved that Conjecture 1 also holds for graphs of maximum degree 4 Following lemma is needed in the proof

Lemma 1 1^{[1]} Every **2-**connected **3-**regular graph has a perfect matching.

2 Results and Proofs

Let G be a graph of maximum degree 3 A 4-total coloring of G is called perfect if all the 3-vertices of G receive a same color, color α say, and each of the 2-vertices and 1-vertices of G receive a color different from α . We refer to a perfect 4-total coloring as 4-PTC.

(First, let us show some usful lemmas)

Lemma 2 1 Let G be a **2**-connected **3**-regular graph and H be a graph obtained by subdividing each edge of G once a time. Then, H admits a **4**-PTC.

Proof By the defination of H,

$$V(H) = V(G) E(G),$$

$$E(H) = \{uv \mid u \quad V(G), v \quad E(G), u \text{ and } v \text{ are incident in } G\}$$

and each 2-vertex of H corresponds to an unique edge of G.

By Lemma 1. 1, G has a perfect matching M. Let V_m denote the set of 2-vertices of H which correspond to the edges of M. Since GM consists of cycles C_1 , C_2 , ..., C_l , then, H- V_m consists of even cycles C_1 , C_2 , ..., C_l . Let M_l be a perfect matching in C_l , $i = 1, 2, \cdots, l$. Then

$$S_1 = \prod_{i=1}^l M_i \quad V_m$$

and

$$S_2 = \{v \mid V(H): d_H(v) = 3\}$$

are two independent sets of H.

Since each component B of $H = M_i$ is isomorphic to a path $P = v_1v_2v_3v_4v_5$ of length 4 and the vertex of B which corresponds to v_3 in P is a 3-vertex in H, so, the set of edges of $H = M_i$ can be

partitioned into two independent sets of H, S_3 and S_4 say. Because all the 2-vertices of H are independent to each other and for any 2-vertex v of H- V_m , exactly one of S_3 ,; S_4 uncovers v, so, all the elements of S_3 S_4 { 2-vertex of V(H)- V_m } can be partitioned into two independent sets, S_1 and S_2 say. Clearly, if we color the elements of S_i with color i for each i {1, 2, 3, 4}, then, this is a 4-PTC of H.

Lemma 2 2 Let G be a 2-connected graph of max in um degree 3 and all major vertices of G are independent to each other. Then, G admits a 4-PTC.

Proof By induction on the number of 2-vertices of G. Let

$$V^{2}(G) = \{v \mid V(G) : d_{G}(v) = 2\}.$$

If there is a subset S of V(G) such that G[S] is a cycle and there are only two 3-vertices u and w of G in S, then $X_T(G) = 4$ while G contains exactly two 3-vertices and it is not difficult to verify that $X_T(G) = X_T(G-E(G[S]) + uw$) while G has at least three 3-vertices

W ithout loss of generality, suppose that there is not such a subset S in V(G), i.e., there are at least three 3-vertices on each induced cycle of G. Then, G must be homemorphic to a 2-connected 3-regular graph H and $|V|^2(G)| \ge |E(H)| = l$.

By Lemma 2 1, $X_r(G) = 4$ while $|V^2(G)| = l$. Suppose that G admits a 4-PTC while $|V^2(G)| = k \ge l$.

Let G be a 2-connected graph of maximum degree 3, all 3-vertices of G are mutually independent and $|V|^2(G)| = k+1 > l$. Given a 2-vertex v of G such that $N_G(v) = \{u_1, u_2\}$, $d_G(u_1) = 3$ and $N_G(u_2) = \{v, u_3\}$, let $G_1 = G - v + u_1 u_2$. Then by the induction hypothesis, G_1 adm its a 4-PTC G_2 such that all the 3-vertices of G receive a same color, color 1 say, and each 2-vertex of G receives a color different from color 1.

While $\sigma_0(u_3) = 1$, let $\sigma(u_1v) = \sigma_0(u_1u_2)$, $\sigma(vu_2) = 1$, $\sigma(u_2) = i$ {2, 3, 4}-{ $\sigma_0(u_2u_3)$ } and $\sigma(v) = j$ {2, 3, 4}-{i, $\sigma(vu_1)$ }.

If $G_0(u_3)$ 1, then u_3 is a 2-vertex of G, supprose $N_G(u_3) = \{u_2, u_4\}$.

Figure 1:

While $\sigma_0(u_3) = \sigma_0(u_1u_2) = i$ (see figure 1(a)), let $\sigma(u_1v) = \sigma_0(u_1u_2)$, $\sigma(vu_2) = 1$, $\sigma(u_2) = j$ {3, 4}-{i} if $\sigma_0(u_3u_4) = 1$ and $\sigma(u_2) = \sigma_0(u_3u_4)$ if $\sigma_0(u_3u_4) = 1$, $\sigma(v) = j$ {2, 3, 4}-{i, $\sigma(u_2)$ } and $\sigma(u_2u_3) = j$ {2, 3, 4}-{i, $\sigma_0(u_3u_4)$ }.

While $\sigma_0(u_3) = j$ $\sigma_0(u_1u_2) = i$ and $\sigma_0(u_2u_3) = 1$ (see figure 1(b)). Let $\sigma(u_1v) = \sigma_0(u_1u_2)$, $\sigma(vu_2) = 1$, $\sigma(u_2) = h$ {3, 4}-{i} if $\sigma_0(u_3u_4) = 1$ and $\sigma(u_2) = \sigma_0(u_3u_4)$ if $\sigma_0(u_3u_4) = 1$, let $\sigma(v) = k$ {2, 3, 4}-{i, $\sigma(u_2)$ } and $\sigma(u_2u_3) = h$ {2, 3, 4}-{i, $\sigma_0(u_3u_4)$ }.

While
$$\sigma_0(u_3) = j$$
 $\sigma_0(u_1u_2) = i$ and $\sigma_0(u_2u_3)$ 1. Let $\sigma(u_1v) = \sigma_0(u_1u_2)$, $\sigma(v_2v) = 1$, $\sigma(v)$

$$= \sigma_0(u_3), \ \sigma(u_2) = k \quad \{2, 3, 4\} - \{\sigma_0(u_2u_3), \sigma_0(u_3)\}.$$

O ther elements not mentioned above receive the same color as in σ_0 . Clearly, σ is a 4-PTC. This complete the proof.

Lemma 2 3 Let G be a seperable graph of max im um degree 3 and all 3-vertices of G are independent to each other. Then, G admits a 4-PTC.

Proof W ithout loss of generality, suppose that $\delta(G) = 2$. It is very easy to prove this lemma by induction on the number of cutvertex of degree 2 in G.

Now, we have the main theorem of this paper.

Theorem 2.4 Let G be a graph with an unique major vertex of degree 4. Then, $\chi_{\Gamma}(G) = 5$.

Proof Let G be a graph with an unique major vertex u of degree 4. In case that G does not contains matching M which covers u and each 3-vertex of N (u), we can verify that X_T (G) = 5 directly. Without loss of generality, suppose that M is a maximum matching of G which covers u and each 3-vertex of N (u), and let $H = G \mathcal{M}$. Then A (A) = 3 and all major vertices of A are mutually independent By Lemma 2. 3 and Lemma 2. 4, A admits a 4-PTC A0 with color set A0 = {1, 2, 3, 4} and all 3-vertices receive color 1. It is clearly that for each 2-vertex A0 of A1, the elements adjacent to A2 or incident with A3 receive at most 3 colors in A5. We shall construct a 5-total coloring A3 of A4 from A5.

First, let $\sigma(w) = \sigma_0(w)$ for each w = V(H) = E(H), and let $\sigma(xy) = 5$ for each edge xy of M having $\sigma_0(x) = \sigma_0(y)$.

If each edge of M has received a color, then σ is a 5-total coloring of G, otherwise, let e = xy be an edge of M and $\sigma_0(x) = \sigma_0(y) = l$. Let $N_H(x) = \{x_1, x_2\}$ and $N_H(y) = \{y_1, y_2\}$. Without loss of generality, suppose that l = 4 and both $\{x_1, x_2, xx_1, xx_2\}$ and $\{y_1, y_2, yy_1, yy_2\}$ receive exactly 3 colors

Figure 2:

Case 1
$$\sigma_0(y_1) = \sigma_0(y_2) = k$$
 4, $\sigma_0(y_1) = i$ 4 and $\sigma_0(y_2) = j$ 4

If one of y_3 and y_4 , y_4 say, is a 3-vertex in H, let $\sigma(y_2)$ $\{i, j\}$ - $\{\sigma_0(z_2)\}$, $\sigma(y_2y) = k$,

 $\sigma(y) = \{i, j\} - \{\sigma(y_2)\}, \ \sigma(yy_1) = \sigma(y_2) \text{ and } \sigma(xy) = 5.$ Therefore, we assume that both y_4 and y_3 are 2-vertices in H (Seefigure 3, where the slanted edges y_1z_1 and y_2z_2 are edges of M).

Figure 3:

A ccording to the set of colors assigned to z_1 , y_3 , y_3y_5 , z_2 , y_4 , and y_4y_6 in σ_0 , we can reassign colors to y_4y_2 , y_2 , y_2y_1 , y_1y_3 and y_3 such that y receives a color different from color 4. for example, if $\sigma_0(z_1) = j$, $\sigma_0(y_3) = j$ and $\sigma_0(y_3y_5) = i$, then let $\sigma(y_1) = i$, $\sigma(yy_1) = k$, $\sigma(y) = j$, $\sigma(yy_2) = i$ and $\sigma(xy) = 5$.

Case 2 $\sigma_0(y_1) = \sigma_0(y_2) = j \text{ and } \sigma_0(x_1) = \sigma_0(x_2) = i$

If one of x_1 and y_1 , say y_1 , is 2-vertex in H (see figure 4), then let $\sigma(yy_1)$ {4, $\sigma_0(y_2)$ }-{ $\sigma_0(y_1y_3)$ }, $\sigma(y) = \sigma_0(yy_1)$ and $\sigma(xy) = 5$.

Figure 4:

Case 2 1 One of x_1 and y_1 , y_1 say, is a 3-vertex in H which is not u (see figure 5(a)). In this case, if one of x_1 or x_2 , x_1 say, is also a 3-vertex in H which is not u, then $M = M - xy + xx_1 + yy_1$ is a matching of G which covers u and each 3-vertex in $N_G(u)$ and M > M, a contradiction. So, we can assume that both $O_D(x_1)$ 5 and $O_D(x_2)$ 5 hold, let $O_D(x_1) = 0$, $O_D(x_2) = 0$, and let $O_D(x_1) = 0$, and let $O_D(x_2) = 0$, and let $O_D(x_1) = 0$, and $O_D(x_2) = 0$, and let $O_D(x_1) = 0$, and let $O_D(x_2) = 0$, and let $O_D(x_1) = 0$.

Figure 5:

Case 2 2 $y_1 = x_1 = u$. W ithout loss of generality, suppose that $\mathfrak{G}_0(ux) = 3$ and $\mathfrak{G}_0(uy) = 2$ (see figure 5(b)). A coording to the set of colors assigned to y_2, y_2, x_2 and x_2 , it is very easy to reas-

sign the colors to x, y, yy_2 , y_2 , xx_2 and x_2 such that x and y receive different colors. For example, while $\mathfrak{G}(xx_2) = 2$ and $\mathfrak{G}(x_2) = 3$, we can reassign colors as following: Let $\mathfrak{G}(xx_2) = \{1, 4\}$ - $\{C_{\sigma_0}(x_2)\}$, $\mathfrak{G}(x) = 2$ and $\mathfrak{G}(xy) = 5$.

Let σ be the restriction of σ to H, repeat the above process till each edge of M receive a color. σ is a 5-total coloring of G.

References

- [1] J. A. Bundy and U. S. R. Murty, Graph theory with applications, The Macmilian Press Ltd., 1976
- [2] M. Behzad, Graphs and their chromatic numbers, Doctoral Thesis, Michigan State University, 1965.
- [3] Zhang Zhongfu and Wang Jianfang, The progress of total-coloring of graphs (Chinese), Advances in mathematics, 4: 2(1992), 390-397.

具有唯一4度最大度点的图的全色数

许 宝 刚 (山东大学数学系,济南 250100)

摘 要

一个图 G 的全色数 $X_r(G)$ 是使得 V(G) E(G) 中相邻或相关联元素均染不同颜色的最少颜色数 文中证明了, 若图 G 只有唯一的一个4度最大度点, 则 $X_r(G) = \Delta(G) + 1$.