An Inequality of Matrix and Bayes Unbiased Estimates*

Zhang Yaoting

(Shanghai University of Finance and Economics, 200433)

Abstract The inequality of arithmetic mean and harmonic mean is generalized to the positive definite matrix. With this inequality, we get the optimal properties of Bayes unbiased estimates

Keywords positive definite matrix, conditional expectation, inequality of arithmetic mean, Bayes estimator, unbiased estimate

Classification AM S (1991) 62G05/CCL O 212

1 Introduction

If Ψ is a positive random variable and the expectation of Ψ exists, then the arithmetic-harmonic inequality implies

$$E\Psi \ge (E\Psi^{-1}) \quad \text{or} \quad E\Psi^{-1} \ge (E\Psi)^{-1}. \tag{1}$$

We will generalize this inequality to matrix. Now if X is a positive definite random matrix, and EX is finite, then

$$EX \ge (EX^{-1})^{-1}$$
 or $EX^{-1} \ge (EX)^{-1}$. (2)

This is equivalent to saying that $EX - (EX^{-1})^{-1}$ and $EX^{-1} - (EX)^{-1}$ are nonegative definite matrices

By the above inequality, the optimal propertices of Bayes unbiased estimates may be proved As in the book [1], the following results are known

Let θ be a parameter and t be a statistic with

$$E\{t \mid \theta\} = \theta, \quad E\{\theta \mid t\} = t \tag{3}$$

and Et^2 is finite Then

$$\theta = t \quad a \quad s,$$
 (4)

i e, the t is an ideal estimate of θ In the same book, it is pointed out that the finiteness of Et^2 is not necessary. In [2], the following results are proved

^{*} Received April 6, 1995.

- 1. If $E \mid t \mid <$, then (4) follows from (3).
- 2 If $t \ge 0$ as, then (4) follows from (3).

In this paper, we extend the above results to the case that θ and t are matrices

2 An extension of the inequality

For a matrix A, if it is non-negative, then it is denoted by $A \ge 0$ So $A \ge B$ means that $A - B \ge 0$

Lemma 2 1 If X is a $p \times p$ random positive definite m atrix w ith f inite EX and EX^{-1} , then

$$EX \ge (EX^{-1})^{-1} \quad \text{or} \quad EX^{-1} \ge (EX)^{-1}.$$
 (5)

Proof Since for any matrix $Y, Y^T X Y \ge 0$ Now let $Y = (EX)^{-1} - X^{-1}$, then

$$0 \leq ((EX)^{-1} - X^{-1})^{T}X((EX)^{-1} - X^{-1}) = (EX)^{-1}X(EX)^{-1} + X^{-1} - 2(EX)^{-1}.$$

Take expectation in both sides of the inequality we get

$$0 \le E(EX)^{-1}X(EX)^{-1}) + EX^{-1} - 2(EX)^{-1} = EX^{-1} - (EX)^{-1},$$

$$0 \le (EX)^{-1} + EX^{-1} - 2(EX)^{-1}.$$

The proof has been completed

From the above proof we have the following corollaries

Corollary 2 1
$$(EX)^{-1} = EX^{-1}$$
 if $f(X) = EX$ a. s.

Corollary 2 2 The determ inants of EX and EX⁻¹ are related by $det(EX^{-1}) det(EX) \ge 1$.

Corollary 2.3
$$E\{X^{-1} | \mathbf{F}\} \ge (E\{X | \mathbf{F}\})^{-1} f \text{ or any } \mathbf{O} f \text{ ield } \mathbf{F}.$$

3 Bayes unbiased estimator

Now we consider the case where θ and $t = R^p$.

Theorem 3 1 If $E tt^T$ is f in ite and

$$E\{t \mid \mathbf{\theta}\} = A \mathbf{\theta}, E\{\mathbf{\theta} \mid t\} = B t w \text{ ith } BA = I_{p}, \tag{6}$$

then

$$\theta = B t \quad a. s \tag{7}$$

Proof By direct computations we have

$$B (E tt^{\mathsf{T}})B = B E (tE \{ \mathbf{\theta}^{\mathsf{T}} \mid t \}) = B E (E \{ \mathbf{\theta}^{\mathsf{T}} \mid t \}) = B E (t\mathbf{\theta}^{\mathsf{T}}) = E (B t\mathbf{\theta}^{\mathsf{T}}).$$

On the other hand,

$$B (E tt^{T})B = E (B t \mathbf{O}^{T})^{T} = E (\mathbf{O}^{T}B^{T}) = E (\mathbf{O}E \{t^{T} \mid \mathbf{O}\}B^{T}) = E (\mathbf{O}\mathbf{O}^{T}A^{T}B^{T}) = E \mathbf{O}\mathbf{O}^{T}.$$

Now combining the above equations we conclude that

$$E(\theta - B t)(\theta - B t)^{T} = E\theta\theta^{T} - EB t\theta^{T} - E\theta t^{T}B^{T} - EB tt^{T}B^{T} = 0$$
(8)

This results in $\theta = B t$ as The proof has been completed

In the linear model, $E\{y | \theta\} = A \theta$ and the corresponding least estimator of θ is

$$(A^{T}A)^{-1}A^{T} = :By,$$

where B satisfies that BA = I. Now if the second moments of the components of y are finite, then from Theorem 3.1 we drive that

$$\theta = B y \quad a \quad s$$
 (9)

Note that we may get a similar conclusion if θ and t in the Theorem 3.1 are matrices. The following lemma follows directly from the arithmetic-hamonic inequality.

Lemma 3 1 If $A = R^{p \times p}$ is a positive definite matrix satisfying that $\frac{1}{p}$ tr(A = 1) = 1 and det(A = 1).

Theorem 3 2 If Θ and $T = R^{p \times p}$ are positive definite matrices satisfying

$$E\{\Theta \mid T\} = T \quad and \quad E\{T \mid \Theta\} = \Theta, \tag{10}$$

then $\Theta = T$ a.s.,

Proof From (10), we get

$$E(\Theta^{-1}T) = E(E\{\Theta^{-1}T \mid \Theta\}) = I,$$

and

$$E\left(T^{-\frac{1}{2}}\Theta T^{-\frac{1}{2}}\right) = I.$$

Now let $X = T^{-\frac{1}{2}}\Theta T^{-\frac{1}{2}}$. It is clear that $X^{-1} = T^{\frac{1}{2}}\Theta^{-1}T^{\frac{1}{2}}$ and EX = I. Hence we have

$$1 = \frac{1}{p} \operatorname{tr} E(\Theta^{-1} T) = \frac{1}{p} \operatorname{tr} E(T^{\frac{1}{2}} \Theta^{-1} T^{\frac{1}{2}}) = \frac{1}{p} \operatorname{tr} EX^{-1}$$

$$\geq [\det(EX^{-1})]^{\frac{1}{p}} \geq [\det(EX)]^{-\frac{1}{p}} \geq [\det(I)]^{-\frac{1}{p}} = 1.$$

So we have proved that $EX^{-1} = I = EX$. By the Corollary 2 1 we obtain X = I a s. The proof has been completed

References

- [1] D. Blackwell and M. A. Girshick, Theory of games and statistical decisions, John Wiley, 1954
- [2] P. J. Brickel and C. L. Mallows, A note on unbiased Bayes estimates, Statistical Rs Reports, AT &T, Bell Laboratory, 49 (1987).