Journd of Mathematica Research & BExposgtion
Vol.18, No.3, 341 - 346, August 1998

Using Normal Form of Matrices over Finite Fieldsto
Congruct Cartesian Authentication Codes

You Hong
(Dept. of Math. Harbin Ingtitute of Technology , Harbin 150001)

Nan Jizhu
(Dept. of Math. Veterinary University , Changchun 130062)

Abstract In thispaper , one construction of Cartesan authentication codesfrom the norma form of matrices
over finitefidds are presented and its sze parameters are computed. Moreover , assume that the encoding rules
are chosen acoording to a uniform probability distribution, theP, and Ps, which denote the largest probabilities
of a successul imperonation attack and of a succesf ul subgtitution attack repectively , of these codes are d
computed.
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1. Introduction

Let S, Eand M be three non- empty finite sstsand let f : Sx E -~ M beamap. Thefour tuple
(S, E,M;f) iscdled an authentication code [2 ,3] , if

(1) themap f:Sx E -M is surjective and

(2) forany m M and e Ethereisans Ssuchthat f(s,e) = m,
then such an sisuniquely determined by the given m and e. Supposethat (S, E. M; f) isan authen
tication code, we cadl S, E, and M the st of urce states, the set of encoding rules, and the set of
messages reectively , and cal f he encoding map. The cardinals| S| ,| E| ,| M| are cdled the sze
parametersof thecode. Let s S,e E,and m M besuchthat m=f(s,e). Then we say that
the message m contains the encoding rule e. Moreover , if the authentication code satidies the further
requirement that given any message m there isa unique ource state s such that m = f (s, e) for every
encoding rule e contained in m, then the code is caled a Cartesan authentication code.

Some authentication codes based on projective geometry over finite fields were constructedin [1].
Projective geometry , according to Klein' s Erlangen Program , isthe geometry of the projective genera
linear group . Wan'®*"! used symplectic and unitary groups over finite fields to construct Cartesan
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authentication codes. In the present paper , one construction of Cartesan authentication code from the
normal form of matrices over finite fields are presented and its Sze parameters are computed. More-
over , assume that the encoding rules are chosen according to a uniform probability distribution, the P
and Ps, which denote the largest probabilities of a success ul impersonation attack and of a success ul
substitution attack regoectively (see [3]) , of these codes are d computed. Comparing with the ge-
ometry method of congructions of Cartesan authentication codes, we see that the matrix method is
dmpler and better in ome way. Before thispaper , we have not seen usng matrix method to construct
Cartesan authentication codes.

Let F,beafinitefield containing q>2 eements. Denote by M, (( F,) the set of al nonzero n
by t (2< n< t) matricesover thefield Fq, and denote by GL ,( Fy) the genera linear group consst-
ing of al n by ninvertible matricesover Fg.

Set

N =Y |E rer Oh i=1,2, ,n
0 nx t
G = (GLn(Fg) ,GLi(Fg)) = GLn(Fg) X GL((Fg).

2. Construction of cartesian authentication codes

Define the source state S to be the st N, the message M to be the set M, ¢ ( Fy) , and the en
coding rules E to bethe st G.
Define
f:SXE - M,

sx (91,02 - 91502,
where g1 GLn(Fg) ,02 GLi(Fg).

Snce every n by t matrix over afidd isequivaent to & diagond’’ form, i.e. , a norma form,
the map f is surjective. It iseasy to show that the map f satifies the seoond condition of the defini-
tion of authentication code. By the invariance of the rank of matrices under thé equivalent actions ’
we can show that given any message m thereisa unique source state s such that m = f (s, e) for every
encoding rule econtained in m. Hence, the above construction yields a Cartesan authentication code.

Lemma1 |9 =n, [ml =d*- 1,16 =q" 2 1ld-0 [d- .
Proof It isobviousthat | S| = n,| M| = q" - 1. Thecardina | E| followsfrom that
| GLn(Fg) | = qm’n’é‘__ui_l[(qi - 1) (se[6]). O
Lemma 2 The number of encoding rules contained in a message is | GL,( Fg) || GLn- (Fg)| ]|

GLi. ((FQ|-g""""27  where r = rank(M) , M is the given message.
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. I, O
Proof sLet M beamessage,i. e., M M, ((Fy). Assdme razk( M) = r. Let P:{O 0 be a
ource state corregponding to M. The number of encoding rules contained in the message M isequal to
the number of the slution of the pairs (U, V) which satify the equation UPV = M, where U
GLn(Fg) , V GL{(Fg. Weknow that thereisat least apar (X,Y) GL,(Fy x GL{(Fg) such
that

XPY = M. (1)
S
X tupvy?! = p (2
Set
A ={(U,V) GLn(Fy) X GL{(Fg) :UPV = M},
B ={(X,Y) GLn(Fg X GL((Fy) :XPY = P}.
Define

9:A - B,
(U,V) =(xtu,vy?h,
where (X, Y) isafixed slution of the equation (1) . It is not difficult to show that the map @ isin-
jective. S0 the number of encoding rules contained in a message M isequa to the cardind | B| . Then
we shall compute the number | B| , i.e. , the number of the lutionsof thepairs( X, Y) GL.(Fg)
x GL{( Fg) which satify the equation
XPY = P. (3)

In fact we only need to compute the number of thepairs (X, Y) GL.(Fg X GL( Fg) which satify
the equation

XP = PY. (4)
Let
r n-r rot-r
r r
ve n X = | Xu1 X12 ne ot YI Y11 Y12 -t
X21 X22 Ya1 Y22

By the equation (4) we have
xu 0 {Yn Y12

su ct nd it (5)
X1 O 0 0
This means that x11 = VY11, X21 = 0, Y12 = 0. Hence
X = X111 X12 v = Y1 0 6)
Hel 0 xp ya V% S

where x13 =y1n  GL((Fg) , x22 GLn. ((Fg) ,andy» GL:. (Fg) . Conversdly,if Xand Y have
theform (6) , then ( X, Y) isapar which satifies the equation (4) . Thus the number for choos ng
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thepairs ( X, Y) which have theform (6) ,i.e. , the number of encoding rules contained in a message

M isequa to
r(t-r)

| GL(F |- GLa (F) -] GLe(F) |- d™ 7. q
where r isthe rank of M. O
Lemma3 Let M; and M, be two distinct message which contain an encoding rule in common.
Then the number of encoding rules contained in both M1 and M» isequal to| GL,(Fg)|-| GL -
r2( Fo) | -] Gln- r (FQ || GLi ¢ (FQ)|- g™ 2% whererank(My) = ry, rank(M5) = r,, and
rh= ro.
Proof Let Mjand M be two distinct messages, rank( M1) = ry and rank( M2) = r,(without los of
generality , assume r; = ry).

lr O i Il O
Let Py h(; ato be a ource state corregponding to M; and P2={(; 0 be a ource state

corresponding to M». The number of encoding rules contained in both M1 and Mzisequa to the num-

ber of lutionsof the pairs ( X, Y) which satify the following equation
XP1 Y = M]_

12 XP2Y = Mz

(8)

where M'2= UM,V for ome U  GL.(Fy) , V. GL((Fy).
By Lemma 2 we can assume that X, Y have the form

r n- rp r ry t-nrn r
of 6) X =| Xu X nor 0 Y| Xu 0 ton (9)|_(
0 X12 Y21 Y22

where x11, X22, Y22 are invertible.

Let
) O
L 2 P, = 0
0
By the second equation in (8) we have
o 0
X11] ' X11l = Mg, (10)
0 O
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h , mi1  Ma2
where M', = .
M Mz1 M22 SS
Note that the rank of mj1is rpand my2; =0, m2 =0, my; =0. Usng the above line of argument
inLemma 2, weobtain that the number of x1; which satifies (10) isequa to the number of the ma

W,
trices having the fornl)] © where @W;  GL 2 ( Fq) B G- r2(Fy) , D isequal to] GL,
2

(Fg)| ] GL- r2(Fg)| . Observing (9) and usng the above result , we obtain the number of encoding
rules contained in both Mj; and M3 is
| GLr2(Fg) | -] Gl 2(Fg) -] Gln rn(Fg) || GLia(Fg |- g™ 2%,
where ry =rank(Mq) , ro=rank(M,) ,and ro < ry. O
For convenient sake, let
f(r) =] GL.(Fg) || Gla ((Fg) || GLi ((Fg) |- g("t20

d ) USSR el n(n-1) +t(t-1) +r(r-1)
= [Id-oIJd-0Jld-1 - q 2 :
i=1 =1 K=1

where r isthe rank of a message M (see Lemma 2) .

We have
1
f(r+1) _ hl q (11)
f(r) (" "-D(q -1
Snceq=>3,2< n< tand rzl,q-‘;‘r<(q""—1)(qt'r-1) fordl 1< r< n- 1. Then
_f_(_;+ll<1,ED
f(r)
f(n) < f(n-1) < < f(1). (12)

Now assuming that the encoding rules are chosen according to a uniform probability distribution, we
compute the probabilitiesof a success ul impersonation attack P, and of a success ul subgtitution attack
Ps. It followsfrom Lemma 1 and 2 and the result (12) that

_ g-1

(A -D(d- D’

and followsfrom Lemma 2 and 3 and the result (12) that

P

Ps(P2| P1)
| GL(F Il GLr -, (F [ GLn r (Fg || GLe (Fg | guimt2w
"1 rr2n<ar>§5 n f(ry)
=[a(a+D] "
Theorem The above construction yiel ds a Cartesian authentication code with size parameters
| SI = n,
| M| =q"- 1,
n t
| &= IIta - v Il Dq
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Assume that the encoding rules are chosen according to a uniform probability distribution, the proba-
bilities of a successf ul i mpersonation attack P, and of a successf ul substitution attack Ps are given by
q-1

P - D(d- D
and
pe = N
a(q + 1)
respectively.
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