Fin ite Groups whose Abelian Subgroup Orders Are Consecutive Integers

Feng Yanquan
(Dept of Math, Northern Jiaotong University, Beijing 100044)

Abstract In this paper we give a complete classification of finite groups whose proper abelian subgroup orders are consecutive integers

Keywords Sylow s theorem, solvable group, Frobenius group.

Classification AM S (1991) 20B 25/CCL O 152 2

In [1] the finite groups all of whose element orders are consecutive integers have been classified ShiW ujie¹² has determined all finite groups whose proper subgroup orders are consecutive integers. In [2], ShiW ujie posed the following problem: To classify all groups in which proper abelian subgroup orders are consecutive integers. In this paper we answer the above question and obtain the following conclusion:

Theorem Let G be a finite group and $\pi_a(G)$ the set of proper abelian subgroup orders in G. If $\pi_a(G) = \{1, 2, ..., n\}$, then $n \le 6$ and one of the following holds

- (1) n=1 and $G \cong Z_p$, p prime
- (2) n=2 and $G\cong Z_2 \times Z_2$, or $G\cong Z_4$
- (3) n=3 and $G \cong S_3$, or $G \cong Z_6$
- (4) n=4 and $G \cong A_4$, or $G \cong S_4$
- (5) n=5 and $G \cong A$ s
- (6) n=6 and $G \cong S$ 5.

All groups discussed will be assumed to be finite and all our notation is standard as can be found in Gorenstein [3]. Moreover, A < G indicates that A is a proper subgroup of G and P_q denotes a q-Sylow subgroup of G, where q is a prime. For convenience, we call a group G whose proper abelian subgroup orders are consecutive integers an OA_n group, where n is the maximal integers in $\pi_L(G)$.

Lemma 1 Let n be a positive integer and p_i the i-th prime of the prime series, $p_k = m$ ax $\{p_j | p_j \le n\}$. If $n \ge 5$, then following inequalities hold.

(1)
$$2p_{k-1} + 1 > p_k$$
 (2) $p_{k-1}^2 > n$

^{*} Received M ay 16, 1995 Supported by the Postdoctoral Science Foundation of China and Morningside Center of Mathematics, Chinese Academy of Sciences

Proof We can immediately check (1) and (2) for $n \le 20$ For n > 20 we have $p_{k-1} > (p_k - 1)/2$ by [2, Lemma 1] and (1) follows A gain by [2, Lemma 1] we see that

$$p_k > n/2$$

and

$$p_{k-1}^2 > ((p_k - 1)/2)^2 > n^2/16 - n/4 \ge n$$

and (2) follows

Lemma 2 Let G be a 2-g roup and $|G| \ge 16$ Then G has an abelian subgroup of oder 8

Proof Let A be a max in all abelian normal subgroup of G. Then $A = C_G(A)$ from [3, p. 185].

If A = 4, then

$$|Aut(A)| = (2^2 - 1)(2^2 - 2) \text{ or } 2(2 - 1)$$

and

$$|G/A| = |G/C_G(A)| |Aut(A)|,$$

we have

$$|G| = |A| \text{ or } |G| = 2|A| = 4 \text{ or } 8,$$

a contradiction.

Lemma 3 Let G be an O A n g roup. Then G is solvable if and only if $n \le 4$

Proof If $n \le 4$, then G is obviously solvable

If an OA_n group G is solvable and n > 4, by Lemma 1 we can suppose that $|G| = 2^{\alpha_1} 3^{\alpha_2} \dots p_k^{\alpha_k-2} 2p_{k-1}p_k$ because a group of order $p^2(p \text{ prime})$ is abelian. Since G is solvable, there exists a subgroup H of G such that $|H| = p_{k-1}p_k$. By Sylow s theorem and Lemma 1, H is cyclic and $|H| = p_{k-1}p_k > p_{k-1}^2 > n$. This is a contradiction against the fact that G is an OA_n group.

Theorem 1 Let G be an O A n group where $n \le 4$. Then one of following holds:

- (1) $n=1 \text{ and } G \cong Z_p, p \text{ prim } e$
- (2) n=2 and $G \cong Z_2 \times Z_2$, or $G \cong Z_4$
- (3) $n=3 \text{ and } G \cong S_3, \text{ or } G \cong Z_6$
- (4) n=4 and $G \cong A_4$, or $G \cong S_4$

Proof The conclusions (1) and (2) are obvious For n=3 we have |G|=6 and (3) holds For n=4, Lemma 2 implies that |G|=12 or 24. First, we shall show s that $P_3 \not = G$.

A ssum e that $P_3 \triangleleft G$. Since G is an O A 4 group, obviously $C_G(P_3) = P_3$ A s $|Aut(P_3)| = 2$, we see that $|G/P_3| = 1$ or 2 and hence |G| = 3 or 6 It is plainly impossible

Considering the minimal normal subgroup N of G, we have |V| = 2 or 4 If |V| = 2, then NP_3 is cyclic and $|VP_3| = 6$, a contradiction. Thus |V| = 4 and $|VP_3| = 12$. As NP_3 can not have any element of order 6, we infer that $NP_3 \cong A_4$

If |G| = 12, then it follows that

$$G = N P_3 \cong A_4$$

If |G| = 24, it is clear that $|G: N|_{3} = 2$ and hence $N|_{3} \triangleleft G$. It follows that $G \cong S_{4}$

Theorem 2 Let G be an O A n group and n > 4 Then:

- (1) $W e have n \leq 6$
- (2) n=5, then $G \cong A$ 5 and if n=6, then $G \cong S$ 5

Proof We first deal with the case where n = 5 and 6 If G exists, then by Lemma 2 and Lemma 3 we can suppose that $|G| = 2^k \cdot 3 \cdot 5$ (k < 4) and G is nonsolvable

Let S be the maximal solvable normal subgroup of G and N/S a minimal normal subgroup of G/S. Then N/S is a nonabelian simple group and

$$\pi(N/S) = \{2, 3, 5\}.$$

Therefore S is 2-group and $S = O_2(G)$. From [4, p. 12] we have $N/S \cong A_5$ A lso, G/S is isomorphic to a subgroup of Aut (N/S). And $G/S \cong A_5$ or S_5

By Lemma 2 it is clear that

$$|S| = |O_2(G)| = 1 \text{ or } 2$$

If $|O_2(G)| = 2$, then $O_2(G)P_5$ is a cyclic group of order 10. Thus

$$O_2(G) = S = 1$$

and

$$G \cong A_5 \text{ or } S_5$$

(2) follows

Let G be an O A n group, where $n \ge 7$,

$$|G| = 2^{\alpha_1} 3^{\alpha_2} \dots p_{j}^{\alpha_j} p_{j+1} \dots p_k, 2p_{j+1} > n \ge 2p_j,$$

where p_i is the ith prime of the prime series A s 9 does not divide the order of SL (2, 5), the proof of [1, Lemma 7] implies that G is neither Frobenius nor 2-Frobenius and a proof similar to [1, Lemma 8] yields that G has a normal series which contains a nonabelian simple factor group G_1 such that $p_{j+1}, \ldots, p_k = \pi(G_1)$.

In the case where $7 \le n \le 10$, the above description implies that G has a nonabelian simple factor group $G_1 = G_1/S$ such that $S_1 = G_1/S$ such that $S_2 = G_1/S$ such that $S_3 = G_1/S$ such that $S_4 = G_1/S$ suc

A ssume that 3 divides the order of S. Considering the 3-Sylow subgroup Q_3 of S, we have $Q_3 \triangleleft G_1$ because S is nilpotent O byiously $|Z(Q_3)| = 3$ or 9. By Sylow s theorem $Z(Q_3)P_7$ is abelian and $|Z(Q_3)P_7| \ge 21$ where P_7 denotes the 7-Sylow subgroup of G_1 , a contradiction Thus S is a 2-group and $S = O_2(G_1)$.

As $Z(O_2(G_1))$ is abelian, it is clear that $|Z(O_2(G_1))| \le 8$ When $|Z(O_2(G_1))| = 2$ or 4, from Sylow s theorem we can easily prove that $Z(O_2(G_1))P_7$ is abelian and

$$|Z(O_2(G_1))P_7| \ge 14,$$

a contradiction When $|Z(O_2(G_1))| = 8$, we similarly have $Z(O_2(G_1))P_5$ is abelian and

$$|Z(O_2(G_1))P_5| = 40,$$

where P_5 denotes the 5-Sylow subgroup of G_1 , a contradiction. Thus $|Z(O_2(G_1))| = 1$ and $O_2(G_1) = S = 1$. Therefore G_1 is a nonabelian normal simple subgroup of G and $G_1 \cong A_7$ or PSL (3, 4).

As $G_1 \triangleleft G$ and $G_G(G_1) = 1$ we infer that

$$A_7 \le G \le S_7 \text{ or PSL } (3,4) \le G \le A \text{ ut } (PSL (3,4)).$$

When $A_7 \le G \le S_7$, we conclude that

$$G \cong A$$
 7 or S 7.

But both A_7 and S_7 are not O_{A_n} groups because A_7 contains an abelian subgroup of order 9 and does not contain any abelian subgroup of order 8 and S_7 contains elements of order 12 W hen PSL $(3,4) \le G \le A$ ut (PSL (3,4)), G is not an O_{A_n} group because PSL (3,4) has a subgroup which is isomorphic to $Z_4 \times Z_4$. Therefore there does not exist any O_{A_n} group with $10 \le S_1 \le S_2 \le S_3$.

For $n \ge 11$ we can also prove that there does not exist any OA_n group using an argument similar to [1, Lemma 10]

Acknowledgments The author is indebted to Professor ShiW ujie and Professor R. Brandl for several helpful suggestions

References

- 1 Brandl R and ShiW ujie Finite groups w hose element orders are consecutive integers J. Algebra, 1991, 143: 388-400
- 2 ShiW ujie Finite groups whose proper subgroup orders are consecutive integers J. Mathematical Research & Exposition, 1994, 14: 165-166
- 3 Gorenstein D. Finite groups, Harper & Row. New York/London, 1968
- 4 Gorenstein D. Finite simple groups Plenum, New York/London, 1982

Abel 子群的阶为连续整数的有限群

冯 衍 全 (北方交通大学数学系, 北京100044)

摘 要

本文给出了所有有限群它的 A bel 子群的阶为连续整数的分类