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Ordersof Classical Groupsover Finite Rings*

Feng H ong
(Dept of Appl M ath , Dalian U niversity of Technology, Dalian 116024)

Abstract It isobserved that a classical group over afinite ring R w ith identity
can be reduced to that over finite fields after the proceduresof taking* modulo
the radical”,“ direct sum” and* tensor products’. Basing on that fact, we cal-
culate the orders of classical groups over R and the number of k-dimensional
free submodulesof an n-dimensional freemodule over R.
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1 Introduction

L et R denote a finite ring w ith identity and J its nilpotent radical From the theory of
W edderburn-A rtin, we have

R/J ZOM o, (Fo) (1

w here Fq is the finite field w ith g elenents, andM m, (Fq),miX mi the total matrix ring over
Fq Theordersof classical groupsover afinite field arew ell-know n, and aparallel result has

been given in [6] for finite commutative rings In thispaper, we generalize these results to
arbitrary finite rings T he necessary conceptsand tem inologieson finite ringsare referred to
[3]

L et R be afinite ring asin (1), GL.(R) the group of unitsinM »(R), and SL«(R) the
subgroup of GL «(R) generated by thematrices T (A= Ia+ Aej, iZ j, A R. Herelnisthen
X n identity matrix and e; is thematrix whose only non-zero entry isa 1 in the (i, j)-posi-
tion GL.(R) andSL .(R) are called thegeneral linear group and the gecial linear group, re-
gectively. To define the unitary groups, w e suppose that there is an anti-isomorphisn a- -

ainR such that a= a for any a R. Two kindsof the unitary groups are defined as follow s

U2n(R,H2):{T GLan(R) [THAT' = H;,Wherele[_ol lo]
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Uaxn(R,H 1):{T GLx(R) |TH2?': H;,Wheresz |:O I(_';]’

I'n
Here T' denotes the trangpose of T. Themain results of this paper are the follow ing four
theorens:

Theoren 1 LetR bea finitering asin (1). Then

e ®) = b ITL et m o) |

Theoran 2 LetR beasin Theoran 1 Then
Ist.R) |= [GL.R) [|a]/IR" ]

w here R " denotes the group o unitsinR, and A, thesubgroup o R~ generated by (abct+ a+
c) (cba+ a+ ¢)” ‘,abct a+t ¢ R'.

Theoran 3 LetR beasin Theorans 1 and 2, and suppose that 2 isa unit d R. Then

t
Ua®,H) = ] 2H |Spam, (Fq) |,

n(2n- 1) |K

and

t
pa®RHD[= P L L] oo (Fo) |
i=1

whereK={a J |;= a}, L={a J |;: - a}, and Spam, (Fq),02m, (Fq) are the symplectic
group, orthogonal group over thef inite f ield Fq repectively.

SinceR is noetherian, it has BN (invariant basis number), namely, for every free R-
moduleA, every two basesof A have the sane cardinal M oreover, if A isan n-dimensional
freemodule (with an n-elenent basis), then any generating set with n elenents is a basis
(cf. [5],[p. 111, Theorem 4 9).

L et n denote the number of all k-dmensional free submodules of an n-dimensional

R

freemodule If R= Fqisthe finite fieldw ith g elanents, then [ﬂ is just thew ell-know n
R

Gauss binom ial coefficient [j w hose value is given by
q

[n] _@- 1(g-*t- 1) (gr*t- 1).

Koe  (@- D@ ' ... (a- 1
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In general, we have

Theoren 4 LetR beasin Theorans 1, 2and 3 Then
t
no _ k(n- K) |:rm:-—|
|:k:| R |J | H km; q,'

Theproofsof these theoran sw hichw ill be given in the follow ing four sections are based
on the observation that a classical group over a finite ring defined as above can be reduced to
that over finite fields after the proceduresof taking* modulo the radical”,“ direct sum” and

tensor products’.

2 Proof of Theoran 1

The proof is given in three steps
(i)  Since each elenent of GL.(R) correponds to a basis of the n- dimensional free
left R-moduleR"= { (a1, @, ..., a) |a R}, and {04, 0e, ..., o} isa basisof R" if and
only if {oe(modJ), o(modJ),...,on(modJ)} isabasisof (R/J)"(see[3], p. 87), A
GL~(R) if andonly if A (modJ) GL~(R/J). Sowe have a surjective group morphisn
®G.R) - - GL.(RA),
A - SA (modJd)
w ith the kernel, denoted by GL«(J), consisting of matrices of the form

In+ (aij)nx n, aij J.
2
n

Obviously, |[GL.() |= 5
(i) LetR= @i1Ri ThenM.(R)=®i-M n(Ri). Sowe have a group isomorphisn
(see [3], p. 398)

t
® GL.R) - - [JoL.R),
. i=1
from w hich it follow s that |GL«(R) |= Hi:1|GLn(Ri) |
(iii) LetR = M (Fq). From the structureof’ block” matrices, wemay viev any ma-

trix in GL.(R) asan invertiblematrix inM m (Fq), and any matrix in GL m (Fq) can al® be
considered as an elanent of GL.(R). Sow e have a group isomorphisn

@ GLa(R) - - GLm(Fq).
To sum up, we have proved the theoram.

3 Proof of Theoram 2

Since a finite ring R is' stable”, i e , R possesses the property that for any left ideal N
of Randr R, N+ roontainsaunitof R if N+ Rr=R, (see [3], p. 399). So the discus-
sions about the gecial linear groupsover a division ring (cf. [1]) can be copied for the case
over afinite ring The processes are asfollow s:
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(a) Each elanentA in GL.(R) can be decomposed asA = BD (u), whereB SL

(R), D (u) = diag{1, ..., 1, u} isadiagonalmatrix,andu R . So it can be shown that
SL«(R) isanomal subgroup of GL.(R).

(b) GL.R)AL-R)=R /A,
w here A is the subgroup of R~ generated by (abc+ a+ c) (cba+ a+ c) ', abc+ a+ ¢ R .

L et Pbe the natural morphisn of R* onto R /A, where An= {u R’ D (u) SL=.
(R)}. Then

dett GL.(R)- - R /An

A - - Hu) ifA = BD (u)
isa surjectivemorphisn with the kernel SL«(R). So

GL.(R)/AL.(R) =R /As

If n= 2, we have Ao= A (see [4]).
If n= 3, observing that

SLa(R) n GLn 1(R) = SLn 1[7],

w e have that An= A
T herefore

GL.(R)/SL.(R) =R’ /A,
w hich completes the proof of the theoram.

4 Proof of Theoran 3

The proof of Theoran 3 can be completed as follow s

(1) Restricted toU2n(R,H 1) , ¥(as defined in § 2) is a surjectivemorphisn of Uz
(R,H 1) onto Sp(R/J), whichw e denote by ® |u,, @ -

(1) LetUax() denote the kernel of ® |, 1y Then by a smilar argument in [1],
wemay show that U=Q) |= | [ ¥ [k |

(1) If R= ®iz1Ry, then P o, &1y, the restriction on Uz (R, H 1) of @ defined in

8§ 2, isan isomorphisn of Uz (R,H 1) to Hi: Uan(Ri,H 1).
(M) LetR=Mn(Fq). WehaveM n(R) =M m (Fq). Let1.(R) denote an identity ma-

trix inM » (R). By the isomorphisn ofM »(R) =M m (Fq), we consider 1.(R) as the sane as
Im (Fq) inM m (Fq). M oreover, we identify thematrix

[- I?(R) In(oR)}W”h[- |£(Fq) IméFQ)]'

So w e can get an isomorphisn betweenU (R, H 1) and Spzm (Fq), the symplectic group over
the finite field F4 T herefore,

|U x»(R,H 1) |: |Sp2rm (Fq) |-
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To sum up, we have

t

Ua®,HD = P e K PT] [spamf (Fo) |
i=1
if R isasin (1).
Similarly, we can prove
t
Ua®H2) = P L PIT loam (Fo) |.
i=1

5 Proof of Theorem 4

1) LetA beany n-dimensional free left R-module, (n, k)= the set of all ordered k-tuple
{vi,vz, ..., vk} of R-linear indgpendent vectors in A and [n, k]r the cardinal of (n, k)=
From the definitionw e know that every ordered k-tuple in (n, k)= generates a k-dimensional
free submoduleof A, and every k-dimensional free submoduleof A has [k, k]z = |GL«(R) |

bases, thuswe get that [n, k]r = [n] [k, k]~
R

k
2) LetA bean n-dmensional free R-module ThenA /JA isan n-dimensional free R/
J-module Theelenentsof A andA /JA arewritten asv= (a1, az, ... a.) andv= (ai+ J, az
+J,..., atJ)witha R, repectively. A smentionedin 8§ 2, {vi, vz, ..., vn} isabasis
of A if and only if {vi, vz, ... ,va} isabasisof A /JA, o {u,uz ..., w} (n, k)= if and
only if {us, uz ..., w} (n,k)rswhich implies that [n,klz= |3 [*[n, k]rs.

3) LetR=S®W beadirect sum of two finite rings It iseasy to establish the bijection
from (n,k)r to (n,k)s* (n,k)w. Thuswe have

=L

4) LetR=Mnm(Fq), andA an n-dimensional freeR-module Then each elenent of (n,
k)r can be regarded askm X nm matrix over F(f rank km. So, by the theory on Gauss bino-

S q

.= b
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To sum up, we have

K(n- k)ﬂ[m]
i1 km

i
i
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