Journal of Mathematical Research & Exposition

Vol.19. No.1. 18--24. February. 1999

A Class of Oscillatory Singular Integrals *

Le Fulong Hu Guoen

(Institute of Information Engineering. Zhengzhou 450002)

Abstract  L? mappiug properties are considered for a class of oscillatory signular

integral operators.

Keywords Calderén-Zygnmnd kernel. oscillatory singular integral operator. polynomuial
growth estiinate.

Classification AMS(1991) 42B20/CCL 0174.2

1. Introduction

We will work on R™ (n > 1). Let K(z) be a standard Calderén-Zygmund kernel, i.e.,
K is C' away from the origin, has mean value zero on each sphere centered at the origin,
and for some positive constant A,

|K(2)] < Al=]™",  |VK(z)| < Ale|™7". (1)

Let ®(z) € C*(R"™\{0}) be a real-valued function which satisfies

|D*®(z)| < Blz|*~!, for |a| <3, (2)
> |D“%(z)| > B'|lz|*, (3)
la|=2

where a is a fixed real number, B and B’ are positive constants. Define the oscillatory
singular integral operator

Tf(z) = p.v. / e K (2~ y)f(y)dy. (4)
For the special case ®(z) = |z|*, such operators have been studied by many authors (see
[1 — 4], for example). Recently, Fan and Pan[®! considerded the operator defined by (4)
with phase function ¢ satisfying (2) and (3), and established the L? (1 < p < o) and H!
boundedness for this operator.
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The purpose of this paper is to consider the L” mapping properties for a class of
oscillatory singular integral operators related to the operators defined by (4). Let m be a
positive integer, a € L>(R"™). The operators we consider here are of the form

Tomf(e) = [ VK (@ = y)(Vaya) f(y)dy, (5

n

where K is a Calderén-Zygmund kernel and

1
Vw.ya:/ a(z + t(y — z))dt.
Ju

i

For the case of n = 1, if we set A(z) = [ a(t)dt, it is easy to verify that

I((-’lﬁ - y)(Vm.ya)m = K(.’I} - y) <é(j2%j;4—£y—)_>m

also satisfies (1) and the corresponding singular integral operator is bounded on L'(R")
for 1 < p < oo. Thus by repeating the arguement used in [5], we see that in this case, the
operator defined by (5) is bounded on LP(R") for 1 < p < co. On the other hand, for the
case of n > 2, K(z — y)(Vi,,a)™, the kernel of the operator defined (5), fails to satisfy
the well-known Homander condition required in the classical Calderén-Zygmund theory.
Christ and Journé (¢ showed that the L” bound of the n—commutator defined by

Ta. mf(z) = R K(IB - y)(VJ:,ya)mf(y)dyv (6)

satisfies a polynomial growth estimate, i.e., for each £ > 2 and 1 < p < 00, there exists a
constant C = C,, ,, such that

HTu.'m.lel S Cm“Ha”Z(',”flIP

It is natural to conjecture that the L” bound of the operator T, ,, also satisfies the same
estimate. In this paper, we will prove that this is true. Our result may be stated as
follows.

Theorem Let 1 < p < oo, T be defined as in (4). Suppose that ® satisfies (2) and (3)
for some a # 0. Then for each p > 2, there exists a positive constant C = C,, ,, such that

T fllp < Cllal N1 fllp-

2. Proof of Theorem
We begin with a preliminary lemma which will be used in the proof of our Theorem.

Lemma 1 7} Let K(z,y) be a distribution which away from the diagonal {2 = y} agrees

with a function satisfing
|K(z,y)| < Az —y|™"
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Let 1 < p < 0o. Suppose that the operator

T1(z) = [ Klz.9)fw)dy

is bounded on LP(R™) with bound ||T||. Then the truncated operator
Tie) = [ Ky
T-y|s¢

is bounded on LP(R™) with bound C(||T|| + A), and C is independent of €.

Proof of Theorem Without loss of generality, we may assume that ||a||oc = 1. Let
pu > 2. Let ¢ € C°(R"™) such that

supp o C {1/2 < |z| < 2} and Z p(2792) =1, for |z| £ 0.

j==oc

Set ¢;(2) = ¢(277z) for integer j. To prove our Theorem, we consider the following two
cases.

Case I. a > 0. Let (z) = 1 - %1 ¢j(z). It is obvious that suppy C {|z] < 4} and
P(z) = 11if |z| < 1. Write

To.m f(z) / . =Wz — g)K (2 — y)(Ve.ya)™ f(y)dy +

i/ Mgz - y)K (2 - y)(Va,ya)" f(y)dy
= Tﬁmfu)+§:zgmf@y

Let us consider the term T}  first. Set

70 f(2)|

Il

' Af—yi« ¥(z - y)K(z - y)(Vw.ya)mf(y)dy\ +

/lm_qu (ei'}(w—y) — 1)1/:(:6 -y)K(z - y)(VI'ya)mf(y)dyi +

‘/I —~y|>1 ei‘l’(z-y)dj(z ~y)K(z - y)(Vz-ya)mf(y)dy‘
= E+F+G.

Recall that ¢(z) = 1 for |z| < 1. Thus

B[ K-V )|
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The result of Christ and Journé (¢! and Lemma 1 shows that
IEll, < Cm*[|fllp, 1 <p< oo.

On the other hand, by the fact a > 0 and (2), trivial computation shows that

F<C |z — y| 7"+ f(y)ldy < CM f(z),

lz—y|<1

where M f is the Hardy-Littlewood maximal function of f. So we have
IFll, < Clifllp, 1<p < oo
| It is obvious that G < CM f(z). Therefore
IGll, < Cllfllp, 1<p < oo
Combining the estimates for E, F and G yields that
[ Tamflls < Cm*(Ifllp, 1<p < oo.

Now we turn our attention to the operator T7__ (5 > 1). We have the following crude

estimate '
“Tg,mf”p <Clifllp, 1<p< o0. (1)

We want to obtain a refined L? estimate for TJ ., i.e., we want to show that there exist a
positive constant § such that

1T fll2 < C2™ |, (8)
If we can do this, interpolation between inequalities (7) and (8) then gives that
I3 Fllp < Cm27||fllp, 1< p < 00, (9)

with § > 0. Summing over the last inequality for all j > 1 leads to our desired estimate.
The proof of Theorem is now reduced to proving (8). Set

U f(e) = [ D e K@ - 9)(Veya S0y (10)
By dilation-invariance, we see that the inequality (8) is equivalent to the estimate

103 fllz < Cm27%||£]l2. (11)

Write R™ = UgQg, where each Qg is a cube having side length 1, and these cubes {Q4}
have disjoint interiors. Set f; = fxg4. Since that the support of U, gm fq is contained in a
- fixed multiple of Q4, thus the supports of various terms {UJ .. f4}4 have bounded overlaps
and

U2 LB <CSNUI L fall3.
d
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So we may assume that supp f C @ for some cube @ having side length 1. Let n(z, y) €
C3(R™ x R™), n is identically one on 50nQ x 50nQ and vanishes outside 100nQ x 100nQ.
Set F(z, y) = (Vi.4a)"n(z, y). The fact that supp f C Q implies that

Ui (@)= [ g — y)K(z - y) Pz, 1))y
Let £ be a small positive constant which will be chosen later. Write
F(z,y) = Fi(z, y) + F2(=,y),

where

Fi(2,9) = (X000 F 6 1) (2 0),

A denotes the Fourier transform and Vv denotes the inverse Fourier transform. Decompose
the operator U

m

Ulnf(z) = [ K - y)p(e - 9)Fi(z )y +
/ ePPETNK (2 — y)p(z - y) Fa(z, y) f(y)dy
= Ulnf(z) + UlL(=).
To estimate these two terms, we will use the following two lemmas.

Lemma 2 (see [8, page 402]) There exists a positive constant a < 1/3 such that

//Ruxm [B (&, m)IP(L + 1€ + [nl)**dédn < Cm?.

~Lemma 3 (see [5]) Suppose that & satisfies (2) and (3). Then There exist a positive
constant C such that for each j € Z, the operator

Uih(e) = [ Pz - y)K(z - y)h(y)dy (12)

satisfies

U]y < C279%/2 |,

We now return to the proof of (11). By Schwarz’s inequality, it is not difficult to find
that

VL@ <C [P )Pyl 1B,

Lemma 2 together with Plancherel’s theorem then shows that
WELS@IE < CUAB [ [ IF(e,)Pdedy

B[ [ 1B mPdean
S+ >z
Cmi22| 1|2,

A

IA

IA
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It remains to estimate UZIL. For each fixed n € R™, set f, = "™ f(y). By Fubini’s

@a.m’
theorem, we have

RS = [ [ eRE U S ()dgdn.
El+inl<2es

Thus by Minkowski’s inequality and Lemma 2 and Lemma 3, it follows that

WiBsle < ¢ [ [ IFE milvflladedn
e+l <22
e ) 1/2
< compgi( [ [ (B midedn) Ifl
B nywR"
< sz—j(u/Z—En,)“f”z'

Let ¢ = a/4n. Combining the estimates for UJ-1 and Ua’ II Jeads to the estimate (11).

a.m

Case II. ¢ < 0. Let ¢(z) =1- EJ__X @j(z). it is easy to see that supp ¢ C {|z| > 1/4}
and ¢(z) = 1 if |z| > 1. Decompose T, ,, as

Tonf(@) = [ o0z = )K (e = 1)(Veya)" flu)dy +

Z/ iz~ )K (2~ y)(Veye) " F(¥)dy

j_—x

= a 171. + : : (L 1",

j=—

As in the case I, we have that

Tt < |[ K-V S +

— |t ol
/u_ybl lz =y F(y)ldy + /1/4§|u:—y[§1| yI ™ f(y)ldy
’/Im—ulx K(z - y)(Vn.ya)’n-f(y)dyl + CM f(z),

where in the last inequality, we haved used the fact that a < 0. Thus by the result of
Christ and Journé (¢ and Lemma 1, we obtain that

173 flly < Cml fllp, 1< p < oo.
On the other hand, for j < —1, by spliting F(z, y) as
F(z,y) = Fi(z, y) + Fx(z, y)
with
A9) = (X gy peme FE M) (2, 9),
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and repeating the arguement used in Case I, we can obtain that there exists some v < 0,
such that

TS fllp < Cm27Y|f||,, 5 < -1, 1< p< oo

This finishes the proof of Theorem for the case of a < 0.
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