Weak Global Dimension and Endomorphisms of Modules

Feng Lianggui

(Dept of Math, National University of Defence Technology, Changsha 410073)

Abstract U sing endomorphisms of modules in this paper, we give the characterizations for rings of weak global dimension $\leq n$ where $n \geq 0$. Let R be a ring, we partially answer the question: When has any finitely presented R module M the nonfinitely resolution: 0 M F_0 F_1 ... F_n ..., where each F_i is finitely generated projective, i = 0, 1, 2, ...?

Keywords weak global dimension, flat module, absolutely pure dimension, endomorphism.

Classification: AM S (1991) 16E10, 16D 60/CLC O 153 3

Document code: A Article **D**: 1000-341X (1999) 02-0332-05

1. In troduction

Throughout this paper R is a ring with unity 1 - 0, R Mod (resp. mod-R) will denote the category of left (resp. right) unital R modules, also R (resp. M_R) indicate that M is in R mod (resp. mod-R). Unless otherwise metioned, we will be working in R mod For all term inology, the reader is referred to [1]

We know that a ring R is a VN regular ring (weak global dimension is 0) if and only if every R module is flat, and if and only if for any α R there exists an element β R such that $\alpha = \alpha \beta \alpha$ The first result of the paper (Proposition 1) show that R is a VN regular ring if and only if the coimage M /ker α of every flat left R module M under an endomorphism α is again flat Moreover, with the analegous methods of [2], we give characterizations for rings of weak global dimension \leq n, where n is any natural number

Following [3], let R be a commutative ring, then R is coherent if and only if for any R -module A, and for any projective resolution P_{n+1} P_n ... P_0 A 0 of A, with P_{n+1} , P_n finitely generated, we can find finitely generated projective R -modules P_{n+2} , P_{n+3} , ..., such that ... P_{n+3} P_{n+2} P_{n+1} P_n ... P_0 A 0 is exact (see Proposition 2 $2^{[3]}$). The refore, let R be a commutative coherent ring, then for any finitely presented R -module M, M has the non-finitely resolution: ... P_n P_{n-1} ... P_0 M 0, where P_t is finitely generated projective

Biography: Feng Lianggui (1968-), male, born in Xingguo county, Jiangxi province Ph. D., Currently an associated profsser at National University of Defence Technology.

^{*} Received date: 1996-04-23

Naturally, there is the question: Let R be a ring, when has finitively presented R -module M the nonfinitely resolution: 0 M F_0 F_1 ... F_n ... where F_i is finitely generated projective, and i = 0, 1, 2, ...? A nother purpose of this paper is to partially answer the question above

2 Main results

Proposition 1 Let R be a ring, T denote the class of all f lat left R $\neg m$ odules. Then the f ollowing are equivalent.

- (1) R is a von N eum ann regular ring (VN regular ring);
- (2) If M = T and $f = \operatorname{end}_{R}M$, then $\operatorname{co-ker} f = M / \operatorname{Im} f = T$;
- (3) If M_R is f lat and f end M, then M / Im f is f lat in m od \overline{R} .

Proof Since the weak global dimension requires no left-right distinction, clearly it suffices to prove $(1) \Leftarrow \Rightarrow (2)$. An immediate result is $(1) = \Rightarrow (2)$.

 $(2) \Rightarrow (1)$. Let M and H is a submodule of M, we first show that M/H T. In fact, let G. F H be surjective W if F free, obviously F T. Define Φ end $W \oplus F$ by $\Phi(x,y) = (Oy, O)$, then $\mathbb{Im} \Phi = H \oplus O$, so $W/H \oplus F = W \oplus F$ / $\mathbb{Im} \Phi$ is in T from W. Therefore W/H is flat, as required

Now assume N any R module Notice again there is a surjective homomorphism $\epsilon F_N = N$, where F_N is a free R module, so the following sequence is exact: $0 = \ker \epsilon F_N = F_N / \ker \epsilon$. 0. By the forgoing discussion, $F_N / \ker \epsilon$ is flat Then N is flat because $N \simeq F_N / \ker \epsilon$.

Theorem 2 Let R be a ring, then the following statements are equivalent.

- (1) The weak g lobal d imension of R is ≤ 1 ;
- (2) If M T and f end M, then co-im $f = M/\ker f$ T.

Proof $(1) = \Rightarrow (2)$ is clear

 $(2) = \Rightarrow (1)$. Let M = T, L is a submodule of M. We need prove that L is in T. Consider σ . F L, where F is a free R module and σ is a surjective homomorphism. Define ∂ end $(M \oplus F)$ by $\partial(m,y) = (\sigma y,0)$. Then $\ker \partial = M \oplus \ker \sigma$, so $M \oplus F/\ker \sigma = M \oplus F/M \oplus \ker \sigma \simeq F/\ker \sigma \simeq L$. By (2), we have L is in T.

Remark Recall taht a ring R with weak global dimension ≤ 1 if and only if T is closed under taking submodules. But Theorem 2 above show that the weak global dimension of R is ≤ 1 if and only if the co-image M/ker f of every flat left R-module M under an endomorphism f is again flat, thus weakening the usual requirement that T is closed under taking submodules

Generally, for the rings of weak global dimension at most n, where $n \ge 0$ is any integer, we obtain the following theorem.

Theorem 3 Let R be a ring, $F_n = \{RM \mid Flat \mid dimM \leq n\}$, then the following ar equivalent:

(1) $w \ eak \ g \ loba \ l \ d \ m \ R \leq n;$

(2) If $M = F_n$ and $f = \operatorname{end}_R M$, then $\operatorname{co-ker} f = M / \ln f = F_n$.

Proof $(1) = \Rightarrow (2)$ trival

(2) = \Rightarrow (1) A ssum eM F_n , L is a submodule of M, we show that M/L F_n , In fact, there are following exact sequences:

$$0 - L - M - M/L - 0$$

and

$$F - {}^{\sigma}L - 0$$
.

where F is free F is flat so F F_n . Define Φ end $(M \oplus F)$ by $\Phi(m, y) = (\sigma y, 0)$. Then Im $\Phi = L \oplus 0$ so $M \oplus F/\text{Im } \Phi = M \oplus F/L \oplus 0 \simeq M/L \oplus F$. By the shifting theorem of flat dimension, $M \oplus F$ F_n , so from (2) we have $M/L \oplus F$ F_n , consequently Flat dim $(M/L \oplus F) \leq n$, as required

Now let N be any R module Consider the exact sequence 0- $\ker \partial P \stackrel{\partial}{=} N$ 0w ith P projective By the known result above, $P/\ker \partial F_n$, so $N = F_n$ because $N \simeq P/\ker \partial$.

Note that we have left-right symmetry in Theorem 3(2) above beacuse weak global dimension of R requires no left-right distinction.

As before, T denote the class of all flat left R -modules If f end M with M if M /Kerf is also in T, then the exact sequence

0 kerf
$$M$$
 $M/\ker f$ 0

implies 0 ($M/\ker f$) + M + $\ker f$ + 0 is exact, where ($M/\ker f$) + M + $\ker f$ + denote the character module of $M/\ker f$, M, ker f resp. Consequently, $\ker f$ is a direct summand of M + , so $\ker f$

T. This suggests the question:

What's the characterization of the ring R for which M and f end M implies that ker f is in T?

The following theorem give an answer on the question above

Theorem 4 let R be a ring, then the following are equivalent:

- (1) the weak g lobal d in ension of R is ≤ 2 ;
- (2) If M T and ∂ end $_RM$, then $\ker \partial$ T.

Proof (1) = \Rightarrow (2) Given M T and ∂ end M, then we have the following exact sequence:

0 ker
$$\epsilon$$
 M $M/\text{Im }\partial$ 0

By (1), Flat $\dim M / \operatorname{Im} \partial \leq 2$, but M is flat, so $\ker \partial$ is in T.

(2) = \Rightarrow (1) Given_RN, obviously there is the exact sequence 0 L F $^{\sigma}N$ 0 with F free Similarly, there is the exact sequence F $^{\delta}L$ 0 with F free Define Φ end $(F \oplus F)$ by $\Phi(x,y) = (0,\delta x)$

so $\ker \Phi = \ker \delta \oplus F$. Since $F \oplus F$ T, condition (2) implies that $\ker \Phi$ T, so $\ker \delta$ T. Therefore there is the exact sequence of N:

$$0 \operatorname{ker} \delta F F^{0} N 0$$

It shows that is Flat $\dim N \leq 2$ Since_RN was arbitrary, this implies (1).

The arguments simular to those used above can be used to prove the following results:

Theorem 2 Let R be a ring, $n \ge 1$. Then the following are equivalent:

- (1) The weak global dimension of R is $\leq n+1$;
- (2) If $M = F_n$ and $f = \operatorname{end}_R M$, then $M / \ker f = F_n$.

Theorem 4 Let R be a ring, $n \ge 1$. Then the following are equivalent:

- (1) The weak global dimension of R is $\leq n+2$;
- (2) If $M = F_n$ and $f = end_R M$, then $kerf = F_n$.

For a commutative ring R, [3] defined the finitely presented dimension of R. It measures how far away a ring is from being Noetherian Following [3], let R be a commutative ring, then R is coherent if and only if for any R module A, and for any projective resolution P_{n+1} , P_n , ..., P_0 , P_0 , and for any projective resolution P_{n+1} , P_n , ..., P_0 , and P_{n+1} , P_n finitely generated, we can find finitely generated projective R modules P_{n+2} , P_{n+3} , ..., such that ..., P_{n+3} , P_{n+2} , P_{n+1} , P_n , ..., P_0 , P_0 ,

Let R be a ring, when has finitively presented R module M the nonfinitely resolution:

$$0 \quad M \quad F_0 \quad F_1 \quad \dots \quad F_n \quad \dots$$

where F_i is finitely generated projective, and i = 0, 1, 2, ...?.

The next purpose of this paper is to discuss the question above

Theorem 5 Let R be a left and right coherent ring. If the absolutely pure d in ension of R as right R-module (i.e. apd (R_R) , see [4]) = 1, then for any finitely presented right R-module C, C* has the following nonfinitely resolution.

$$0 \quad C^* \quad F_0 \quad F_1 \quad \dots \quad F_n \quad \dots$$

where F_i if finitely generated projective, i = 0, 1, 2, ...

Now suppose C is a finitely presented right R -module By [5], C^* is a finitely presented left R -module Since C^* is torsionless, then it follows that $0 C^* F_0 B 0$ exacts, where B is also finitely presented torsionless, and F_0 is finitely generated free U sing the assertion to prove above again, then we have the following exact sequence: $0 B F_1 B_1 0$, where F_1 is finitely gene

rated free and B is also finitely presented torsionless Therefore 0 C^* F_0 F_1 B_1 0 exacts Consequently, there is the nonfinitely exact sequence: 0 C^* F_0 F_1 F_2 ..., where F_i is finitely generated free and $i=0,1,2,\ldots$

Proposition 6 Let R be a commutative coherent ring. If the absolutely pure d in ension of R R is 0, then f or any f initely p resented left R T module M, M has the f ollowing nonfinitely resolution: 0 M $F_0 F_1 \dots F_n \dots W$ here each F_i is f initely generated p rojective.

Proof We simply note that any finitely presented left R module M is torsionless from [7] Theorem 2.3. Since apd $(R_R) = 0$, $Ext_R^2(A,R) = 0$, for any finitely presented right R module A. So by [6] Theorem 4, M is reflexive. Similar to the proof of Theorem 5 above, the result following immediately.

Acknowledgement The author would like to thank Professors Zhou Boxun and Tong wenting for their helps and encouragements

References

- [1] Matsumera H. Commutative Ring Thory [M] Cambridge: Cambridge University Press, 1986
- [2] Nicholson W K and Varadarajan K. Endomorphism and global dimension [J] Acta math. Hungar, 1995, 67: 93-96
- [3] Ho Kuen Ng. Finitely presented dimension of commutative rings and modules [J]. Pacific J. of Math., 1984, 113: 417-431.
- [4] Fieldhouse D J. Character Modules, D in ension and Purity [J] Glasgow Math J., 1972, 13: 144-146
- [5] Nanqing D. Dual modules of specific modules [J] J. of Mathematics Research and Exposition, 1990, 3: 337-340
- [6] Nanqing D. *Duality in coherent rings* [J]. J. of Nanjing University, Mathematical Biquarterly, 1990, 1: 60-63
- [7] Jain S. Flat and FP-injectivety [J]. Proc. Amer. Math. Soc., 1973, 41(2): 437-442.

弱总体维数和模的自同态

冯 良 贵

(国防科技大学数学系、长沙410073)

摘要

本文用模的自同态, 给出弱总体维数 $\leq n$ 的环的特征, 其中 $n \geq 0$. 设 R 为环, 部分地回答了下列问题: 何时任意有限表现 R -模M 有无穷分解: 0 M F_0 F_1 ... F_n ... , 其中每个 F_i 均是有限生成投射的, i=1,2,...?