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Abstract:  In this paper, we give the conception of mplicit congruence and nonimplicit congru-
ence in a unigue factorization domain R and establish some structures of irreducible polynom ials
overR. A classical result, Eisenstein’'s criterion, is generalized
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1 Introduction

Early in themiddle of the 19" century, F. G M. Eisenstein, a Gemrman mathematician,

gave this famous criterion'™?:

Theoran Suppose that

f(x) = ax"+ anmx" + + aix + ao
is a polynanial w ith coef icients in a unique f actorization danain R. If there exists a prime
elenent p R such that

1° pfan; 2. plac,ar, Lae; 30 pfao,

then f (x) is irreducible over R or its quotient f ield.

Recently, someone show sl that Eisenstein’s irreducible condition is necessary and suf-
ficient ifthe degree of f(x) is 2,only sufficient if that of f(x) is greater than 2 Therefore, it
w ill bemeaningful to mprove and extend Eisenstein’s theorem.

2 Main Reaults
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L et R be a unique factorization domain in thispaper.

Lenma 2 1 Suppose that f (x) = ax"+ arix""+ + aix+ aoisa polynanial w ith coe f icients
inR, wheren isan integer 2 |If thereexistaprimeelenentp R and a codf icient ax(m k=
n) such that

12 pag 20 plaa, e 32 pa,

whereOm n, and 2n=n, then f (x) can not be decanposed into the product o tw o polynam i-
als over R or its quotient f ield, w hose degrees are equal to or less thanm (i @ <m).

In the above lemma, the case ofm = n-1lis just Eisenstein’s criterion

W e drav ingiration from L eanma 2 1 and give the follow ing result:

Theoram 2 2 Suppose that f (x) = anx"+ anix"™"+  + aix+ ao is a polynanial w ith coeff i-
cientsin R. If thereexista primeelanentp R and a codficient ax o f (x) (0<k=n) such
that

1°plag 22 placar, Lanaes, Lan 32 p’fac, an,

then f (x) can be decanposed at most into the product o t o polynanials over R, w hose de-
grees are k and (n-k), respectively.
T he follow ing cases are clear.

Corollary 2 2 1 If k in Theoren 2 2 isequal to O or n, thenf (x) isirreducible over R or its
quotient f ield.

Corollary 2 2 2 If k= n-lor 1in Theoren 2 2, then f (x) can be decanposed at most into
the product o tw o polynanials over R or its quotient f ield, w hose degrees are 1 and n-1, re
g ectively.

Corollary 2 2 3 If k= [n/2] in Theoran 2 2, then f (x) can be decanposed atmost into the
product o W o polynanialsover R or its quotient f ield, w hose degrees are [n/2] and n-[n/2],
repectively. H ere [x] is the largest integer less than or equal to x.

Remark 1 Reducible polynomialsw hose coefficientsadgpt to Theorem 2 2 are easily found:
Example 1l L etn be apositive integer, then the follow ing polynom ial

px*-(p*+ &x"+ p= (px™+ p*"-e) (x"-p)
is reducible overR , wherep, eare aprime elanent and a unit elanent of R , regectively.
Remark 2 On theother hand, the unique possiblity of decomposition overR or its quotient

field isleft in Theoram 2 2 but itsCorollary 2 2 1 So the irreducibility of f (x) overR or its
quotient field in Theoran 2 2 can not be detem ined

Renark 3 By theway, acoording to the proof in § 3of thispaper, if f (x) in Theorem 2 2
is reducible overR or itsquotient field, then both of itsdivisorsare the irreducible polynom i-
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als that adapt to Eisenstein’s condition (or Corollary 2 2 1).
CombiningLenma 2 1 and Theoram 2 2, we get easily the follow ing result:

Theoren 2 3 Suppose f (x) = ax" + anx"™ + + aix + ao is a polynanial with
coef f icients in R. If p,q R are wo distinct prime elanents, and ax, as (0 k n,max{k,
n-k} s< n) aref (x)’scoef f icients, such that

1° p/fak, q |as;

2°p |ao, ai, ,ak1,ak+1, ,an, (lao, a1, ,asiy

32 p’fao, an; g*fao
then f (x) is irreducible over R or its quotient f ield.

A proof of this theorem can be replaced by the follow ing example

Example2 LetR = Z, thepolynomial
g(x) = 3™+ 6x°-5x°-15

is irreducible over Z or its quotient fieldQ , hereZ is the set of all integers

First, we have 3/fa3; 3 |ao, ai, az, as, as, as, ar, as, as, a1, au; and 32/fao, aun, from Theo-
ren 2 2 it follow s that g (x) can be divisible at most by the irreducible polynom ialsover Z or
Q, whose degree is 3or 8 Second, we al® have 5fas; 5las, a1, ,as; and 5°far, from
Lenma 2 1 it follow s that g (x) can not be decomposed into the product of two polynomials
overZorQ , whose degreesare 3 and 8, 4and 7, or 5and @ Combining the first and the
second the irreducibility of g (x) over Z orQ holds

W ith the help of mplicit or nonimplicit congruence, to be defined, anotherway to con-
struct irreducible polynomialsover R or its quotient field w ill be obtained

Definition 2 4“° L et R be a unique f actorization danain For a,b,m R andm# Q We
call a is implicit congruent tob (mod m) if there exists a divisor o b such that a is congruent
to thisdivisor (mod m). Itisdenoted by a= (b) (mod m). Conversely, w e call a is not implicit
congruent tob (mod m) if a isnot congruent to any divisor & b (modm), it isdenoted by a=
(b) (mod m).

Example3 LetR= Z, then7= (4) (mod5) because7= 2 (mod 5) and4= 0 (mod 2); 15
Z (2) (mod 3) because15#% -2,-1,1, or 2 (mod 3).

W e introduce some of the basic propertiesof mplicit or nonimplicit congruence L etm,
np R, p# 0, andebeaunit eleanent of R.

DIfm=n(modp), thenm= (n) (modp), orn= (m) (modp ), but itsinverse is
not true

2) Ifm Z (n) (modp ), thenm &= n (mod p ), but its inverse is not true

3) Ifm = -e, ore(modp ), then, foranyn R, m= (n) (modp).

It isobvious that the mplicit congruence and its inverse contain the usual congruence in
R.

W ith the help of nonimplicit congruence, we mprove Theoren 2 2 into a criterion for
irreducibility of polynomialsoverR.
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Theoram 2 5 Suppose that f (x) = ax"+ a-ix""+ + aix+ acisa polynanial w ith coef f i-
cients in R, w here n isan integer 2 If thereexistsa prineelanentp R and a tem ax (0 k
n) such that

1° pfax, and axZ (a0 an) (modp?);

2° p lao, a1, ,ak1,a+1, ,an;

3 p’fao, an,
then f (x) is irreducible over R or its quotient f ield.

Egecially, whenk = n-1in Theoren 2 5, we get:
Theoram 2 6 Suppose that f (x) = anx"+ anmix""+  + aix+ ao is a polynanial w ith coeff i-
cientsin R(n 2). If thereexistsa primeelanentp R such that

1° pars, andan Z (aca) (modp);

2% p |ao, ai, ,an2;

3 p’fao,
then f (x) is irreducible over R or its quotient f ield.
Renark 1 Comparing Theorans2 5, 2 6with Theoran 2 2, we find ax in Theorans 2 5,
2 6 isneitheraonora.. Becausew e have Eisenstein’s theoren or Corollary 2 2 1when axis
aoOr an.

Renark 2 Conditions1® 2° 3°in Theorem 2 2 is the sane as that in Theorem 2 5 except
ax = (ao,an) (modp?).

Remark 3 The condition p/fan isgiven up, asfor Theoram 2 6, relationa«® (a0 an) (mod
p?) changesinto ax = (a0 an) (modp ).
Theorem 2 5, 2 6 are just the desired results

Example 4 Suppose that
Ax) = 5x"-6x"*-5, n 2

U sing Eisenstein’s theoren, Theorem 2 2, or Theoran 2 3, we can not get #x) has irre-
ducible property over ZorQ. Butwehavel® 5/6= a1, andaw= 6% (5% 5) (mod5);
2% 5lao, a1, ,awan; and 32 540, an. From Theorem 2 5 it follows that ®x) is irre-
ducible, and furthemore, polynomials5x" + 6x">-5, 5x"+ 6x"°-5, , or5x"+ 6x-5, are
irreducibleover ZorQ. Theorem 2 6 fails to {x) because 6= (5x 5) (mod 5).

3 Proof of Theorans

Theoram 2 2 is basic for Theorans2 3, 2 5 FirstweproveLanma 2 1, then give a
proof of Theorem 2 2

Proof of Lemnma 2 1 Suppose thatf (x) can be factorized into the product of two polynom i-
als over R or its quotient field, whose degrees are equal to or less thanm. Letf (x) =
g(x)h(x) , whereg (x) = bx*+ beix" '+  + bix+ bo, h(x) = cx'+ cax™+  + cx+
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C, t+ s= nl1=<t=<s=<m k. Thenwe have

an = by

an1 = bsce1 + bsicg

o))
=
|

= bsCks + bsiCesr 1+ + beic

as bsco + bsici + + bsiCy (n

ar= bico+ brici + + bocy;

ar = bico + bocy;
ao = boCo,

By hypothesisp |ao and pz/faowe have (1) p |bo, p/fCo, or (2) p |CO, p/fbo. Furthemore, from
the condition p |ao, a1, ,am (1< t=< s=<m) and relation (1) it follow s that

p |bo,bs, ,bsorpleo,c1, e

Hencewe get p |ak ocontrary to 1°inLenma 2 1 The lenma holds
improving the above proof, we obtain Theoran 2 2

Proof of Theoren 2 2 Suppose thatf (x) can be decomposed into the product of two poly-
nomials over R , whose degrees are neitherk nor (n-k) . Letf (x) = g(x)h(x) , whereg (x)
= bx®+ beax™+ 4+ bix+ bo, h(x) = cx'+ cax™+  + cx+ o, b, ¢ R, i= 0,
1, ,sj=0,1, ,t t+s=n; 1<t=<sn; t# kor (nk). Thefollow ing relationsare ob-
tained by comparing coefficientsof the equation f (x) = g (x)h(x) on its both sides

an = bsCt;
an1 = bsCr1+ bsicy

as= bsco+ bsici+ + bstc
(11
ar= bwo+ brici + + bocy;
ar= bico+ boct
ao = boCo;

It is clear that there are only three cases to be considered:

1) 1<t<sk=<n. FronLenma?2 1 it follows that Theoran 2 2 is true

2) 1<tk sn. By hypothesisp |ao, p’fas, p |ac, a1, ,ac(t k), and relation (I1),
we have (1) p |bo, b1, ,bei;or (2) pleo,c, ,c placfollowsfrom (2), contrary to hy-
pothesisp/fax (1 in Theorem 2 2).

Case (1) isto be discussed: On theother hand, by hypothesisp |an, pz/fan, p [an, an1,

,as, ,aw1(k 8, and relation (11), we have (i) p |bs, bs1, ,bst, ,be(k+ 1t < k),

or (i) p |ev ce1, , co.
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Combing (1) and (i), we get (i) p |bo, b1, ,bs. Henceany of both (ii) and (iii) leads
to p |a« contrary to 1°in Theorem 2 2

3) 0=k t=sn. W ith the help of the symmetry of case 1) and case 3), our proof is
the same as that of case 1).

The theoran follow s from the above

From Theoran 2 2 its corollaries follow. Theorem 2 3 is a direct result of both T heo-
ren 2 2andLenma 2 1 Now we give aproof of Theoran 2 5

Proof of Theoran 2 5 First, the conditions1°, 2° 3°in Theoran 2 5 exceptac® (ao an)
(mod p?) (0 k n) isthe sane as that in Theoren 2 2 From Theoran 2 2, it follow s that
f (x) can be decomposed at most into the product of two irreducible polynomialsoverR or its

quotient field, whose degrees arek and (n-k) , repectively. Letf (x) = g(x)h(x) , where
g(x) = bx*+ bex!"+ 4+ bx+ bo, h(x) = cx™ + crerx™ ™+ + cix+ co; k#z O
orn. The follow ing equations are obtained by comparing coefficientsof the equationf (x) =

g (x)h(x) on its both sides

an = bkCn-k;
An-1 = bkCok-1 +  Dr-1Coek;

ak = bxCo + bxici + +  DBo-nCoek;

(e

Ank = bnkCo + bnk-1C1 + + boCok;

ar = bico + bocy;
ao = boCo

In viav of the symmetry of the conditions1°, 2° 3°in Theoren 2 5, there areonly wo

cases to be considered:

1) 1=n-k k n. By hypothesisp |an, an1, ,ak+1,p2/fan, and equation (I11), we have
(1) p |b, ber, ,bane1, or (2) plew, ,ci. On theother hand, by hypothesisp |ao, a1,
a1, p*fao, and equation (111) we have (i) p |bo, b1, ,ber, or (i) p |co,c1, o

Inequality 2 < 2k-n+ 1 =< k followsfrom 1 < n-k k n. The combination of (1) and
(i) impliesp |bo,bs, ,bc, thusp |ax contrary to 1°in Theorem 2 5 Similarly, the combina-
tion of (1) and (ii), or (2) and (ii) mpliesp |ax, thisiscontrary to pfac. The combination
of (2) and (i) mpliesax= bwco (modp?), which contradicts the hypothesisacZ (acan) (mod
p?) of 1°in Theorem 2 5

2) 1=nk=k,ie 2k=n. Thisimpliesax= am= bco+ b+  + bock in equar
tion (111). From p |an, ar1, ,ae1 p*fan; and (111), we get (1) p b, ber, b1, or (2)
plo, Ge1, o Inversely, from p |ao, a1, a1, pfao; and (111), wealw get (i) p |bo, by,

,ber, or (i) p |eo, ¢, ,cer. Combining (1) and (i), or (2) and (i), we havep |a« con-

trary to p/faxof 1'in Theorem 2 5 Combining (1) and (i), or (2) and (i), we haveac= boc
(modp?), orax= bco (modp?). They contradict the hypothesisax= (aoa.) (modp?) of 1’
in Theorem 2 &

From the above the theorem isproved
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Now we return to the proof of Theoran 2 6

Proof of Theorem 2 6 First, FromL enma2 1, it isclear that if f (x) is reducibleoverR or
its quotient field, thenf (x) can be decomposed at most into the product of irreducible poly-
nom ial w hose degree are 1 and (n-1) , regpectively. Letf (x) = g(x)h(x) , whereg(x) =
bix + bo, h(x) = coax™ + CGrox">+  + CiX+ o, b, R, i= 0,1 j= 0,1, ,n-1, then

w e have

an = biCn1;
an1 = biCh2 + boCn1;

(M)
ar = bico + bocy;

ao = boco

Byp |ao, a1, a2 p’fac; and (M), weget (1) p |bo, b1, or (2) p e, c1, ,cne. It isclear
that case (1) iscontrary to p/fan-lof 1°in Theorem 2 6 Furthemore, case (2) mpliesari =
bocr1 (Mod p ), which contradictsan1Z (acas) (modp ) of 1 in Theoram 2 6 Hence the the-
oran holds
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