Per iodic Solution of Nonautonomous System with Continuous Time Delays

Gui Zhanji

(Heilongjian M ining Institute, Jixi 158100)

Chen L ansun

(In stitute of M athematics, A cademia Sinica, Beijing 100080)

Classification: AM S (1991) 34C05/CLC O 175. 2

Document code: A **Article D**: 1000-341X (1999) 02-0374-01

We consider the nonautonomous cooperative system with continuous time delay

$$x^{\circ}(t) = x(t) \left[a_{1}(t) - a_{2}(t)x(t) + a_{3}(t) \right] \left[k_{1}(s)x(t+s) ds - a_{4}(t) \right] \left[k_{2}(s)y(t+s) ds \right]$$

$$y^{\circ}(t) = y(t) \left[b_{1}(t) - b_{2}(t)y(t) + a_{3}(t) \right] \left[k_{3}(s)y(t+s) ds - b_{4}(t) \right] \left[k_{4}(s)x(t+s) ds \right]$$
(1)

where $a_i(t)$, $b_i(t)$ (i = 1, 2, 3, 4) are assumed to be continuous, positive and ω -periodic functions; and x(t), y(t) are the density of species; $k_i(s)$ (i = 1, 2, 3, 4) denote nonnegative piecew ise continuous defined in $[-\tau, 0]$ (there $0 \tau + -$) and normalized such that $\int_{-\tau}^{0} k_i(s) ds = 1$. Let $f^L = \inf\{f(t)\}$ or $I = \{(\mathcal{P}_i, \mathcal{P}_i) \cdot \mathcal{P}_i(\theta) \geq 0, \theta - [-\tau, 0], (\mathcal{P}_i(0), \mathcal{P}_i(0)) = 0\}$.

Given σ R and $\mathcal{Q}=(\mathcal{Q},\mathcal{Q})$ C^+ , it is easy to that (1) have a respective unique solution $x(\sigma,\mathcal{Q})(t),y(\sigma,\mathcal{Q})(t)$ through (σ,\mathcal{Q}) at $t=\sigma$ Moreover, $x(\sigma,\mathcal{Q})(t)$, $y(\sigma,\mathcal{Q})(t)$ of for all $t=[\sigma,T]$, where $[\sigma,T]$ is the maximal existence interval of the solution. Such solutions of system (1) are called positive solutions

The following theorem sets forth the principal result of this paper

Theorem Suppose that system (1) satisfies $a_2^L \ a_3^M$, $b_2^L \ b_3^M$. Then system (1) has a unique positive ω periodic solution which is globally asymptotically stable.

References

- [1] Hale J K. Theory of Functional D iff erential Equations [M]. Springer-V erlag, Heidelberg, 1977.
- [2] Burton T A. Lyapunov functionals and periodic solution [J]. Colloquia M athematica Societatis Janos Bolyai 53; Szeged, Hungary, 1988

^{*} Received date: 1998-08-28