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1. Introduction

In bivariate spline theory, in order to solve effectively the linear equations correspond-
ing to the global conformality condition, we can give a suitable numbering of the grid-
segments of the partition so that the coefficient matrix of the linear equations is a band
matrix. We call it the numbering problem of the partitions. Each partition in the num-
bering problem has a counterpart graph. For example, the famous partition proposed by
Morgan and Scott (see Figure 1) is equivalent to the numbering of edges of the graph
shown in Figure 2. In practice, one may encounter a partition whose counterpart is shown
in Figure 3.

In this paper, the numbering problem of the edges of such graphs is discussed. Let
G = (V, F) be a given graph and ¢: E — {1,2,...,|E|} be a numbering of its edges. For
any v € V, define:

Dy(v) = max{| p(uv) — p(vw) |: uv € E,vw € E}, (1)
D,(G) = max{D,(v):v eV}, (2)
D(G) = min{D,(G) : ¢ is a numbering of E}. (3)

D,(v) is called the belt-length of the numbering ¢ for vertex v, and D,(G) the belt-length
of the numbering ¢ for a graph G. D(G) is called the belt-length of G.

It is easy to see that the belt-length of any numbering ¢ for graph G is equal to the
bandwidth of the numbering for the line graph L(G). So the belt-length of G is equal
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to the bandwidth of L(G). The bandwidth problem has been extensively studied, but
there are only a few graphs whose bandwidths are known (cf. [3] for details). In this
paper, we discuss a class of special graphs which comes from spline theory. We will de-
termine their belt-length and give an optimal numbering of the edges of graphs in the class.
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For any positive integers £ > 1 and \/ 2
s > 3, the Morgan-Scott Graph, G(k, s) is aa a3
defined as follows: "
(i) G(k,s) is a simple graph with ks 1 k
vertices;
(ii) The set of the interior vertices of . Xao
G(k,s) forms a cycle of length s, and the :
degree of every element of the set is k + 1. k 1
Here, the set of interior vertices of a , 2
graph consists of all its vertices v such that a a3
the degree of v is greater than one. /\ D
127k Pigure 3\

It is easy to see from the definition that G(k,s) is a connected graphs with ks edges.
Under this definition, the graphs in Figure 2 and Figure 3 are known as G(3, 3) and G(k, 5)

respectively. The main result of this paper is following:

Theorem Let G(k,s) be a Morgan-Scott graph. Then

2k, s=2n+1andk =n,
D(G(k,s))={ 2k —[21], s=2n+1andk #n, , (4)
2k - [s]a s = 2n.
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In the next section, we show that the right hand side of (4) is a lower bound of
D(G(k, s)), and, in Section 3, we present a numbering of G(k, s) which achieves the lower
bound, establishing the theorem.

2. A lower bound of the belt-length for G(k,s)

We first give a upper bound of D(G(k, s)) by presenting a concrete numbering of the
edges:

Proposition 1 Let k > 1 and s > 3 be any two integers. Then D(G(k,s)) < 2k.

Proof Let int(G(k,s)) = {ao,...,a,-1} which forms the cycle (ay,...,a,_1). Let E be
the set of all edges of G(k,s), and E; = {ua; € E : d(u) = 1}. Then E has a partition as

follows: .

E=(|J E)u{aiaiz1:i=0,1,...,s -1}, (5)

1=0

where a, = ap. Let A={1,...,k—1},and a+ A be theset {a+1,...,a+ k —1}. Then
the numbering ¢ is given by

@ik, 0<i <55,
plaiaiv) = { 2s— i)k, [3i]<i<s—1, (6)
and
A, 1 =0,
e(E;) = { plai1a;) + A, 0<i< (3], (7)
plaiai1) + A, [5]<i<s—1

It is clear that the belt-length of ¢ is 2k.

Proposition 2 Let G(k,s) be a Morgan-Scott graph, Then

2k, s=2n+1and k = n,
D(G(k,s)) > 2k [E1], s=2n+1landk #n, (8)
2k — [%], s = 2n.

Proof We still adopt the notations in Proposition 1 and set I'(v) = {uv : uwv € E}
for any vertex v of G(k, s). let ¢ be any numbering of E, that is, ¢ is a bijection from E
into {1,2,...,ks}. Without loss of generality, we may suppose that ¢~(1) € I'(ag). For
every t with 0 < ¢t < [(s —1)/2], let W; = {ag,a1,...,8¢,85-1,...,05_¢}, and,

Te= |J T(u). (9)

weW,

Then h = max(p(T;)) > |T;| holds. Since ¢~!(h) € T, there exists a number m, 0 < m < ¢
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or 1 < s —m <t,such that ¢~1(h) € I'(a,,). If 0 < m < ¢, then

Dy(ay) > |e(aoar) — 1],
De(a1) 2 |p(araz) - placar)l,
cee (10)
Dtp(am—l) Z |<P(a'm,—1am.) - So(a'm—lavn——2)|)
DLp(am.) Z ‘h - So(am.—laNL)I-
On the other hand,
m,Dy(a) _ h—1
D,(G(k,s)) > max(D,(ag),...,Dy(an)) > TZ+¢1 > o
Since 0 < m <t and h > |I';|, we have
ITe| - 1
D,(G(k > 11
oGk 8) > T (1)
Similarly, we can prove the validity of (11) for 1 < s —m < t.
When s = 2n, we take t = [251] = n — 1, then |T,,_1| = 2nk — k + 1. So
2nk — k k
D, (G(k,s)) > - = 2k — e (12)
Since the left side of (12) is an integer, we have that
k
D (G(k, ) > 26— 1], (13)
Similarly, we can prove that
kE+1
D k > 2k — 14
oGk, ) 2 2k [0 (14)

holds for s = 2n + 1. By the arbitrariness of ¢, D(G(k,s)) has the same lower bound as
in (12) and (13).
Furthermore, when s = 2n 4+ 1 and k = n, (13) can be improved to

D,(G(k,s)) > 2k.

Suppose to the contrary that there exists a numbering ¢ such that D «(G(k,s)) = 2k—1.
This implies that all inequalities in (10) and (11) become equalities when ¢* is substituted
for ¢. Suppose ¢*71(1) € I'(ap) and ¢ '(ks) € ['(a,,). It is easy to see that m = n or
m = n + 1. By the symmetric property, we may assume that m = n. Thus

Dw(ao) =2k-1= go*(aoal) — 1,
Dy(a;) =2k—-1=¢"(ai;1a;) — ¢ (a;a;-1) (1 =1,...,n—1), (15)
D,.(a,) =2k-1=sk—¢"(an_1a.).
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Let

Then £ = Ay UA2U EoJ E,.. By (14), we have
2k < ¢ (A1) < sk -2k + 1. (16)

Consider the set A = {1,...,k}. AN ¢(FE,) is an empty set, for otherwise D, +(a,) > sk —

= 2nk > 2k —1. This together with (15) implies A C ¢(Az Eo). Since |Ey| = k-1, we
have m = min(¢*(A2)) < k. Consider set L = {2nk + 1,...,sk}. By the same argument,
M = max(¢*(Az)) > 2nk + 1. Suppose m € ¢*"1(T(a;)) and M € ¢*"(I'(a;)), where
n+12>14,j > s — 1. Considering the belt-length for a;,...,a;, we have

M-m _ 2nk-k+1
> >
li -3l +1 n

Dw'(G(kvs)) > max(Dy(a;),..., D‘P'(aj))

1
2k -1+ — > 2k - 1.

n
This contradicts the assumption that D «(G(k,s)) = 2k — 1. So the proof is complete.
3. An optimal numbering

When k < nor k =n and s = 2n + 1, (6) and (7) have given an optimal numbering
of G(k,s). In this section, we give an optimal numbering for the remaining cases. Set

(%], s =2nand k > n,
— (s k)=4{n
P { (L1 s =2n+1and k > n. (17)

It is easy to see that ¢r < k holds for each positive integer s when 0 < ¢ < n. This implies
1 + (2](3 — 7‘)1 € Azi_l ( for 1 § 1 S n), (18)

where A; =ik + Afori=10,1,...,s—1,and, A = {1,2,...,k}. When s = 2n and k > n,
it is easy to see

ir<k—1(for 0<i<s—n) (19)
When s = 2n+ 1 and k > n, we have

k. k+1

>r
n n+1~

This also implies that (19) is valid. Using (18), we get:
k+(2k—r)ie Ay; (for 0<i<s—mn) (20)

Now we may define the numbering ¢ as follows:

' N 1+ (2k — r)i, 1<i<nm,
plai-ra;) = { k+ (2k—r)(s—1), n<i<s, 20
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N ) Azior —{p(aic1ai)}, 1<i<n,
sO(Es—z)—{ Agiooiy - {p(ai1a)}, n<i<s. (22)

It is easy to see that D,(a;) = 2k — r except that

_} k+(n—1), s=2n,
D“’(a")_{k+nr—1, s=2n+1.

In both cases Dy(a,) < 2k —r. So D,(G) = 2k — 7.
Now we have presented a numbering whose belt-length is equal to the lower bound.

This means (4) holds.
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