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Abstract: It’s well known that a reflection r, associated to every root « belongs to
the Weyl group of a Lie algebra g(A) of finite type. When ¢(4) is a symmetrizable
Kac-Moody algebra of indefinite type, one can define a reflection ra for every imaginary
root « satisfying (o, ) < 0. From [3] we know 7, € —W or 74 is an element of —W
mutiplied by a diagram automorphism. How about the relationship between reflections
associated to imaginary roots and the Weyl group of a syminetrizable Generalized Kac-
Moody algebra (GKM algebra for short)? We shall discuss it for a special GKM algebra
in present paper (see 3). In sections 1 and 2 we introduce soine basic concepts and give
the set of imaginary roots of a class of rank 3 GKM algebras.
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1. Basic Concepts

Let A = (aij)nxn be a real n x n matrix satisfying the following conditions

(cl) a;i=2o0ra; <0

(¢2) a;; <0,if i # j,a;; € Z,if a;; = 2;

(c3) a;; = 01if and only if aj; = 0.
Then the Lie algebra g(A) associated with A is called the generalized Kac-Moody algebra
(see [1] or [2] for details).

Let (n,I[,IIV) be a realization, where Il = {ay,---,a,} and IV = {a}, -, a} are
linear independent sets in 7™ and 7 respectively. We use @ = >_7_; Za; to denote the root
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lattice and Q4 = Y7, Z, a; the positive root lattice of g(A). Denote by A (resp. Ay)
the root system (resp. positive root set) of g(A). Let II" = {a € Il]a;; = 2} be the real
simple root set, "™ = {a € IT|a; < 0} the imaginary simple root set, W = (r;|a; € II™®)
the Weyl group of g(A). We define the real (resp. imaginary) root set of g(A) to be
A™ = W(IT*) (resp. A™ = A\A™). It’s clear that A% = A™ N A, is the positive real
root set of g(A), and A = A™ N A, the positive imaginary root set of g(A). We use
CYV = {Aen 7\ a)) > 0,a; € II"} to denote the dual fundamental Weyl chamber and
N = Z;\{0} to denote the set of natural numbers.

Put Ko = {a € @ \{0}|a € —C" and suppa is connected} and K = Ko\Uj>2jHi‘“.
From formula (11.13.3) in [2], we know the following proposition

Proposition 1 A" = U w(K).
weW
If A is symmetrizable, there exists an invertible diagonal matrix D = diag(ey, - ,€n)

and a symmetric matrix B = (b;;) such that A = DB. There exists a symmetric bilinear
form ( , ) which is non-degenerate on 1. We have an isomorphism v : n — 5™ defined by

(v(h), 1) = (hlh1), h,hyr€m

and the induced bilinear form ( , ) on 5. It is clear that v(a)) = €;a;, (a;,a;) = b;;,1,j =
1,2,---,n. From (2.1.6) in [2] we know the following proposition

V_l(a,j), if a; = 2,

-2

Il

2

i v_ ) Teay
Proposition 2 o; { b ((,fﬂ,)l/_l(ai), if a
2. The imaginary root system of a class of rank 3 generalized Kac-Moody
algebras

2 -1 -b
Lemma 1l Let A=| -1 2 —c¢ |, whereb,ec &€ N. Then
-b —c -2

K = {as}U{klal + ksas|,2ky < bks, ky, k3 € N}U

{k2as + ksasz|2ks < ckg, ko, ks € N}U
{k1ay + kaas + kzaslky, ko, k3 € N, 2ky
< kg + bk, 2ky < ky + cks}.

Proof Since II'* = {a;,az} and T™ = {a3},CY = {A € n|(A,aY) > 0,7 = 1,2}. Let
a = kjay + kaas + ksaz € Q4 \{0}. Then

(a,a1v> = 2k1 — k2 - bkg, <a,a;> = 2](32 - kl e Ckg.
Thus

Ky

I

{a € @:\{0}a € —C" and suppa is connected}

3
{a = Z k,jC!,j € Q+\{0}|2k1 S k‘g +- bk3,2k2 S kl -+ Ck;;}.

1=1
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It is clear that k3 # 0 for every a = Z?:I k;a; € Kp.

If k; = ky = 0, then a = kzas € Ko = k3 € N. Hence Ky = (UjZ”TIi‘“) U{k1a1 +
kyas + kzas|2k; < ko + bky,2ky < ky + cks, k3 € N,ky and k; are not zero at the same
time}. Thanks to K = Ko\ U;>» FII'™ we get the proof of Lemma 1.

For the sake of simplicity, we let p(k;, k2, k3) denote the set of all k1, k; and k3 satisfying
conditions: 2k; < ko + bks,2ky < ky + cks, ki, ke, ks € N, ki and ky are not zero at the
same time and k3 # 0. Then we can describe K in Lemma 1 as follows

K = {os}| {kion + kaaz + ksas|p(ki, k2, k3)}-

2 -1 -b
Theorem 1 Let A= | —1 2 —c |, where b,c € N. Then the positive imaginary
-b —c -2

root set A of g(A) is

{az,bay + az,cas + as,ba; + (b + ¢)as + ag, (b + c)ay + caz + a3,
(b4 c)ag + (b+ c)az + ag}U{klal + koas + kzag, (kz + bks — ky)ag +
kyas + ksaz, kray + (k1 — k3 + cks)as + ksas,
(bk3 + kg — k1)ag + (k3(b+ ¢) — k1)as + ksas,
((b+ c)ks — kg)ay + (cks — ko + ky)az + kzas,
(k3(b + c) — ka)ay + (ks(b + c) — k1)ag + ksas|p(ki, k2, k3)}.

Proof Since the Weyl gruop of g(A) is
W = (ri|la; € IT") = (r1i,m2) = {1,7'1,7”2,7'17’2,7‘27’1,7'17”27'1},
we get

ri(K) = {bay +as} U{(kz + bkg — k1)ay + koo + ksas|p(ki, ko, k3)},
ro(K) = {cas+ ag}U
{kioq + (k1 + cks — kz)ag + ksas|p(ky, k2, k3)},
rire(K) = {(b+c)as + caz +a3}U
{(ks(b+ c) — k2)ay + (cks — k2 + k1)az + kgag|p(ky, ka2, k3)},
rori(K) = {ba; + (b+ c)az + as}|
{bk3 + ko — k1) + (ka(b+ ) — k1)as + ksas|p(k, k2, k3)},
rreri(K) = {(b+ c)(on +a2)+a3}U
{(ks(b+ c) — k2)ar + (ka(b+ ¢) — k1)az + ksas|p(ky, ks, k3)}

As
Ay = KJr(K) U ra(B) U rira(B) Jrena (B) [ raram (K),

we obtain the proof of this theorem.
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3. The relationship between reflections determined by imaginary roots
and the Weyl group of g(A)

In this section the concept of a special imaginary root is introduced from Kac-Moody
algebras to generalized Kac-Moody algebras. We also discuss the relationship between
reflections determined by imaginary roots and the Weyl group of g(A) (see theorem 2).
As an application, some special imaginary roots are obtained.

Let g(A) be a symmetrizable generalized Kac-Moody algebra, a be an imaginary root
of g(A). If (a, @) # 0, then we define a reflection on 7* by

(A, @)

(o, @)

If we set oV = mu“l(a), then we know

Ta(A) =2 —2 , for A € n".

v : _
v {Oli, if a; =2,

—a, if a;= -2
by Proposition 2 and we have r,(A) = A = (A, a¥)a, for A € n*.

Definition 1 Let a be an imaginary root of g(A) which is a symmetrizable general-
ized Kac-Moody algebra. We call a a special imaginary root, if a satisfies the following
conditions:

(s1) (o) # 0

(52) ro(A) = A,7o(AT) = A, 7 (AP?) = AT

It is clear that if r, € —W then « is a special imaginary root.

Let g(A) be a rank n generalized Kac-Moody algebra. We use (ij) to denote the
diagram automorphism of g(A) determined by exchanging indices 7 and j of Chevalley
generators e, and fi(k = 1,---,n) of g(A4). An induced action of (ij) on n* is obtained

2 -1 -1
natrually (see [1] for details). For example: Let A= | -1 2 -1 |. We get that (12)
| 1 -1 -2

is a diagram automorphism of g(A4). It is easy to see that
(12)W = {(12), (12)7’1, (12)7’2, (12)7‘17’2, (12)7’27‘1 y (12)7‘17’27‘1}.
To denote the action of (12) on n*, we take a = kyay + ksas + kzaz € n* and have

(12)7‘1(&) = (12)(—]61&1 + kz(al + az) + kg(az + (13))
(12)((k2 + k3 — k1)ag + kaas + ksas)
(kg + kg — ky)ag + kaay + ksag.

2 -1 -1
Lemma 2 Let A= | -1 2 -1 | and a = kjay + kqas + kzaz € K, ky, ks, k3 €
-1 -1 -2

Zi k3 #0. If ry € —(12)W, then k1ks # 0.

— 504 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Proof By Lemma 1 we have K = {a3} U{kia1 + kzaz + ksas|p(k1, ks, k3)}. The Weyl
group of g(A) is W = {1,71,72,7172,7271, 717271}

1. If ky = ky = 0, then a = k3asz € K and hence a = az. Thus a¥ = a'“"a v Ha) =
—1-v7}az) = —af and ro(a1) = ray(@1) = a1 — a3. We can get 7o = 7oy € —(12)W by
checking directly, which is a contradiction.

2. If k; = 0 and k2 # 0, then a = k2az+ksas € K and hence 2ky < k3, k2,k3 = 1,2,--
Set @ = k2 — koks — k2. We know (a, @) = 2(k2 — koky — k2) = 2a < 2ka2k3 < 0 (so a < 0)
and a¥ = 1(kyay + koay). Therefore,

1
ro(ar) = a1 + —(k2 + k3)(k2a2 + ksas),
ro(az) = ag + =(ks — 2k3) (ka2 + k3as), (1)
ra(as) = as + ;(kz + 2ks3)(k2az + ksas).

We assert that r, ¢ —(12)W, which is a contradiction. If this assertion is not true
then r, € —(12)W.

a) If ro = (—12)ry, then ro(az) = —(12)r1(az) = —(12) (a1 + @2) = —a1 — as.
Combined with (1), we have aa; + (2a + (k3 — 2kz)k2)a + (ks — 2k2)ksaz = 0. Since
I = {ai1, az,a3} is linear independent, we get a = 0, which is contradictory to that a < 0.

b) If ro = —(12)ryrs, then ro(ay) = —(12)ry7r2(a1) = —(12)(az) = —a;. Combined
with (1), we obtain 2aa; + (k2 + k3)k2as + (k2 + k3)ksas = 0, which is contrary to that
Il = {ay,az,a3} is linear independent.

¢) Ifrq € —(12)W\{—(12)r1,—(12)r172}, we can also get the similar contradiction by
the same discussion as in a) and b).

3. If ky # 0,ks = 0, then & = kyay-+ kzas. Similar proof as in 2 proves the assertion
that r, ¢ —(12)W, which is contradictory. Thus Lemma 2 is true.

2 -1 -1
Theorem 2 Let A= | -1 2 —1 | and a = kyoy + kg + kzag € K C Aijr“. Then
-1 -1 -2

—(12)W if and only if ky = ko = k3 € Z\{0}.
Proof We first prove the “if” part. Let k; = ky = k3 € Z;\{0}. Then

o = k](al + Q9 + a3),

3
(a,a) = kf Z (i, a5) = —4kf < 0,
1,7=1
Vv 2 -1 1 A\ A\ \Y2
a¥ = T a)z/ (a) = —ﬁ;(al + oy + a3).

Thus ro(01) = a1 — (o, ™) = a; + ﬁ(al,ai’ + o) +af)a = a.
On the other hand, riryr (1) = —az. So —(12)rirery(ay) = (12)(az) = a1
Therefore, ro(a1) = —(12)ryr2ri(aq).
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We can also get 7o(az) = —(12)rir2ri(az) and rq4(as) = —(12)r172r1(as) by directly
checking. Since detA = —12, we have dimn* = 3 and II = {ay,a3,a3} is a basis of 5*.
Thus 7, = —(12)ry727r1 € —(12)W as a refelction on 5*.

We prove now the “only if” part. If a = kya; + kgaz + kzaz € K C Aﬂ_‘“, we know
that kl,kz,k;; € Z+\{O} and 2k1 S k2 + k3,2k2 S kl + k3 and hence kl S k3 and kz S k3
and ks < k3. Let a = k% + k% - kg — k1ko — k1k3 — koks. Then

(aya) = > kikj(os, ;) = 2(k3 + k3 — k3 — kikz — kaks — kaks)
1j=1

= 2a < 2(kZ 4+ k2 — k2 — kiky — k2 — k2) = —2(k2 + k1k2) < 0.
So a < 0. It is not difficult to see that
1
= E(kla}/ + kyay + ksay),

av =
(al,a’\> = 2k1 - kz — k3, (az,a/\> = 2k2 - kl - k3
(ag,a

Ay = —ky — ky — 2k

Thus
ro(ay) = ay — ;11-(%1 — ko — k3)(k1a1 + kaaz + k3as), (2)
ralaz) = az — %(2/&2 —~ k1 — k3)(kyay + k2az + ksas), (3)
ro(as) = az + %(h + k2 + 2k3) (k11 + kzaz + k3az). (4)

We assert that if 7, € —(12)W then ro, = —(12)ry72ry. If this is not ture, for example,
re = —(12)rq, then ro(a1) = —(12)(—a;1) = a3. From (2) we have

(a - (2k1 - kz - k3)k1)al — (a + (2k1 - kz - kg)kz)az — (2k1 — kz - kg)kgdg =0

and get
a— (2k1 - k2 - k3)k1 = 0,
a+ (2ky — ka2 — k3)kz = 0,
(2k1 — ko — k3)k3) = 0.

Because k3 # 0, we obtain 2k; — k2 — k3 = 0 and hence a = 0, which is a contradiction.

Similarly, we can prove that if r, = —(12)rs, or 74 = —(12)r173, or 4 = —(12)ry73, or
Po = —(12)rery, or 7o = —(12) - 1 then we get a contradiction as well.
So we must have r, = —(12)r;r27; and
ralar) = —(12)rrari(ar) = = (12)(—az) = ay, (5)
ralaz) = —(12)r1reri(az) = —(12)(—a1) = az. (6)

From (2), (3), (5) and (6) we obtain that (2k; — k2 — k3)a = (2k; — k1 — k3)a = 0.
Therefore k; = k; = k3, completing the proof of the Theorem 2.
By the Theorem 2 above, we obtain the following corollary.

— 506 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



2 -1 -1

Corollary 1 Let A= | -1 2 -1 | anda=k(a; +az+a3),k=1,2,---. Then a
-1 -1 -2

is a special imaginary root of g( A).
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