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1. Introduction

The classical theory of Toeplitz operators and their associated C*-algebras is an elegant
and important area of modern mathematics. For this reason, many authors have sought
to extend this theory to more general setting. The guises in the literature lie mainly in
two respects: One is the Toeplitz operators on the Bergman space in CV, the other is the
Toeplitz operators on the Hardy space in CV or in general discrete groups. There is a great
difference between these two kinds of spaces, so do the properties of the corresponding
Toeplitz operators. It is the custom when we talk about the Toeplitz operators, we must
make it clear which space is undertaking. On the other hand, as shown in section 2, on
some domains in CV, such as Reinhardt domains, both these two Toeplitz C*- algebras
can be viewed as the C*- algebras generated by some weighted shifts. In this paper, we

use the groupoid approach to study unitedly these two C*- algebras under the category of
discrete abelian groups.

2. Wiener-Hopf operators on discrete abelian groups

Let G be a discrete abelian group and G4 a subset of G, (G,G4) is said to be a
quasi-partial ordered group if 0 € G4, G4 + G4 C G4 and G = G4 — G. If furthermore
% = Gy N(—G4) = {0}, then (G, G ) is known as the usual partially ordered group, see
[4] for example. Let {e,|g € G} be the usual orthonormal basis for £2(G). In this paper
we always assume that G is countable, so it is second countable.
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Let w, : G4 x G4 — (0,1] be a weighted function satisfying

wi (g1 + g2,93) = wi(g1,92 + g3)w, (92, 93) (1)

for any ¢g; € G4, i=1,2,3.
For any g € G, define w, and T_, in B (£>(G4)) as follows:

(wg€)(h) = wi(g,R)E(R),

(h_g)’ if h_g€G+v

, otherwise

(T_o6)(R) = { :

for h € G4 and £ € £2(G).

Definition The C*- algebra generated by {T_,,w,| g € G4 } is denoted by W(G), which
is called the Wiener-Hopf algebra.

Remark (1) When wy =1 on G4 x G4, W(G) is just the Toeplitz algebra on the gener-
alized Hardy space, see [4] and [6] for example. If furthermore G = G, then W(G) is just
the group C*-algebra. (2) When (G,G+) = (Z™,Z}) and wy(k,1) = sz+l||l2(n)/||zl||l2(ﬂ)
for some bounded Reinhardt domain © in CV, W(G) is just the groupoid C*-algebra
considered in [2].

For g € G4, let w(g) € £°(G) be the zero-extension of w (g, ) i.e., w(g)(h) = wi(g,h)
if he Gy w(g)(h) =0if h ¢ Gy , define (rrw(g))(l) = w(g)(h + 1) for | € G. The C*-
subalgebra of £*°(G) generated by {T,w(g)|g € G4+,h € G} is denoted by A and its
maximal ideal space is denoted by Y. Clearly G can be imbeded in Y through evalution
( the action here is denoted by a ), and let X = a(G4+)W" . As shown in [1], [2], a(G) is
dense in Y.

Proposition 1 (1) If G5 = {0}, then a is one-to-one.
(2) Vg€ G, a(g) € X ifand only if g € G
(3) X is both open and compact.

Proof (1) Suppose that 1 and z, € G, such that a(z1) = a(z;) . Let g; = g2 = 0, then
by equation (1) we know that w(0)(h) = 1 if h € G4+; w(0)(h) = 0 otherwise. It follows
that 1 = a(z1)(7—z,w(0)) = af22)(7-z, w(0)), so 2 — z; € G,. Similarly z; — z; € G4,
soz; — 22 € Gy N(—G1) =Gy = {0}

(2) Let g € G, if a(g) € X, then since X = a(G+)W", we know that a(g)(w(0)) = 1,
which implies that g € G4.

(3) Let E = {y € Ylw/(a)(y) > 1}, where 1(7(\0) is the Gelfand transformation of
W(0), then X C E. On the other hand, if y € E, then since a(G) is dense in Y, there
is a net {a(gx)}ren such that a(gy) — y in W*—topology, especially a(gy)(w(0)) —
y(w(0)) = w/(B)(y) > %, so there is a Ay € A, such that gy € G4 for all A > X, s0 y € X.
Thus we have X = {y € Ylw/(a)(y) > 1}, s0 X is open in Y. The proof above shows
that X = {y € Y| w(/a)(y) > 2}, s0 X is also closed in Y. Therefore, the characteristic
function of X, 1x is in Co(Y'). It follows that Co(X) = (Co(Y')|x) has an identity and X
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must therefore be compact.

Remark When (G,G4) = (2",27) and wi(k,l) = |]z’"’+’||p(9)/||zl||tz(n) for some
bounded Reinhardt domain § in C¥V, for the sake of proving X’s compactness, the condi-
tion of jointly bounded below given in (2] is redundant.

Next we prove that W(G) is isomorphic to some groupoid C*-algebra. We follow the
notation and terminology of [5].

Define amap Y x G — Y, the image of (y, g) is denoted by y +¢: (y+ g)(a) = y(74(a))
for a € A. Tt is noticable that by definition we know that, if {ys}aen is a net in Y
such that y, — vy, then y, + g — y+gforany ¢ € G. Asin [1] and [2], Y x G is
a transformation groupoid with a natural left Haar system {\ = §, X Aly € Y}. Let
G = Y x G|x the reduction of Y x G to X, endowed with the natural system of measures,
namely A® = §, X A where A is the counting measure on ( possibly part of) G and §; is
the Dirac measure at z in X. Since X is open and G is discrete, by ([3], Proposition 1.3)
we know that {A*|z € X} is actually a left Haar system for G, and since G is abelian,
it is amenable which implies C*(G) = C7 4(G), and Indé, (o) induces a representation of
Cra(G) on £3(Gy o)), Where &,y is the point measure and G,y = {(a(t), —t)|t € G4}
( See[1], Propositions 2.15 and Proposition 2.17 ). As shown in (2], £*(G (o)) is isomorphic
to £2(G, ) in a natural way, so if we denote the isomorphism by V', then 7 = VoInd §,(g)(-)o
V* be a representation of C*(G) on lz(G+).

For f € C.(G) and ¢ € £%(G,),

(7(£)E)(9) = (Ind 6,(0)(f) V*E)(a (g) - )=(f v*s)( (9),~9)
= Y flalg),h— g)(VE)a(h), —h) = 3 fla(g),h — 9)(R).

heGy heGy
As shown in [2], we have the following Proposition:
Proposition 2 7(C*(G)) = W(G).

Proof Let g € G4, write w( ) for the function on G which is the Gelfand transform of
w(g) restricted to X, viewed as the subset X x {0} in G, and which is zero off X x {0}.
For g € G4 ,define uy(g) € Ce(G):

1, if h=-
ui(9)(z,h) = { 0, otherwise.
For g1,g92 and h € G4, we have
ui(g1)" * ui(gz) * w(h) x ui(g2)" * ui(91) = 75,9, w(h). (2)

Casel (z,9)€G,ze€X,2+g€X,24+g1—g2€ X.

(us(91)" % up(g2) * w(h) % uy (92)" * us(91))(2, 9)
= /u+(91)*[(3’9)(y,l)][u+(gz) s w(h) * uy(g2)" * up(g1))(y + 1, ~1) dX"F9(y, 1)
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= 3w (1) (2,9 + s (g2) * w(h) x g (g2)" % up(0)](z + g + 1, 1)
i

—

= Z“+(gl)(-"3 +g+1,—g — Diuy(g2) x w(h) * uy(g2)" *up(91)l(z + g+ 1,-1)
1

j—

= [ug(g2) * w(h) * ui(g2)" * uy(g1)(z + 91,9 — 91)
= /u+(yz)[(z + 91,9 — 91)(¥, D][w(R) * ws (g2)* * us(g0))(y + 1, =) dX=F9(y, 1)

= ST uy(g2)(= + 91,9 — g1 + D[w(h) * up(g2)" * uy(g1)l(z + g + 1, -1)
1

= [w/(Z) xuy(g2)" *us(g1))(z+91— 92,92 — 91+ 9)
= /w/(Tl)[(r + 91— 92,92 — 91 + 9) (¥, D][us (92)" * uy (g1))(w + 1, -1) dXAF9(y, 1)

=S w(h)(z + g1 — 92,92 — 91 + g + Dlws(92)" x usp(9)}(® + g + 1, 1)
1

——

= w(h)(z + g1 — 92)/U+(gz)*[(z +91— 92,92 — 91 + 9)(9,1)] x

ut(g1)(y + 1, =1)dA"+(y, 1)
= w(k)(z + g1 — 92) Y _us(g2) (2 + 91 — 92,92 — g1 + g + Nuy(g1)(z + g +1,-1)
)

=w(h)(z+91-92) Y ur(g)(z + g+ L-g2+ 91— g - Dur(g)(= + 9+ 1,-0)
]
w(h)(z + g1~ g2)us(g2)(z + g+ 91,92 — 9)
_} 0 if g#0,
B { /(TL)(:E + g1 — g2), otherwise.
Case 2 (z,9)€ G,z € X,z+g € X,z + g1 — g2 ¢ X. By the computation above, we
know that in this case, [uy(g1)* * us(g2) * u:(\h) * up(g2)” * ui(g1)l(=,9) = 0.

Now for 7, _;\w(h), ifz e X,z+g1-92 € X, then Tgl_;\w(h)(m,O) = Tg-g w(h)(z) =
2(1g—qw(h)) = (z+g1-g2)w(h) = w(h)(z+g1-92) = [us(91)" * us(g2) ¥w(h) * ui(g2)" *
u4+(91)](,0). On the other hand, if z € X,z + g1 — g2 ¢ X, then there is a net {a(ga)}ren
with g, € G, such that a(gy) — =, so a(gx) + 91 — 92 — = + g1 — g2. Since XC is open in
Y, there is a Ay € A, such that a(gx) + g1 — 92 ¢ X for all A > XAy. By Proposition 1 we
know that gy + g1 — g2 ¢ G4 for all A > Ay, therefore

Tor—g2 W(R)(2,0) = T4, _g, w(h)(2) = 2(7y, g w(h))
= li/x\na(g,\)(rgl_g?w(h)) = lif\nw(h)(.q,\ +91—92) = 0.

Let f € C.(G) with Suppf C X x {g} for some g € G, f is defined on X, x {g},
where X, = {z|z € X,z + g € X}, it is a closed ( hence compact ) subset of X. Let ¢
be a function defined on X, + {g} by ¢#(z) = f(¢ — g,9), and extend it to X which is still
denoted by ¢. Let g = g; — g2, 91,92 € G4, then it is easy to show that

up(g1)” * uy(g2) xd = 1. (3)
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By (2) and (3) , we know that C.(G) is generated by {u,(g), w(g)lg € G+}. It is easy to

show that m(w(g)) = w, and w(u4(g)) = T, it follows that « carries C*(G) onto W(G).
On the other hand, = is faithful since the smallest closed invariant subset of X containing
the support of &,(g) is X ( see [1], Propositions 2.15 and 2.17, also (2], Theorem 2.5 ).

Proposition 3 Suppose {g1,92,...,9n} is a finite subset of G\G4.. If for any g € G+,
thereis ag;, 1 <i < n, such that g+g; € G4, then K(£*(G4)) C W(G), where K({*(G..))
is the ideal of compact operators on £2(G ).

Proof By assumption, we know that {a(0)} = iz, {z € Xl‘rg;u\(O)(:c) < 1}, so {a(0)}
is open in X, it follows that 1(,(0)} € C(X). It is easy to show that 7(1{a(0)}) is a rank
one projection. Therefore, it remains only to show that W(G) is irreducible on £*(G).
In fact, if T € B ({%(G4)) such that TS = ST for any § € W(G), then TT_, = T_,T
and T(T_,)* = (T-4)*T for any g € G+. Let Tep = 3 1cq, {,(lo)eh, then easily shows that

T = 5(()0) 1, so W(G) is irreducible on £2(G ).
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