Solution to the Yang-Baxter Equation and Quantum Yang-Baxter H-comodules *

LI Li-bin¹, WEI Jun-chao²

- (1. Dept. of Math., University of Science and Technology of China, Heifei 230026;
- 2. Dept. of Math., Yangzhou University, Yangzhou 225009)

Abstract: Let H be an arbitrary Hopf algebra over a field k. In this paper, at first we deal with the relationship between solutions to the Yang-Baxter equation and quantum Yang-Baxter H-comodules; then we use the results to give a solution to the Yang-Baxter equation over H.

Key words: Yang-Baxter equation; quantum Yang-Baxter *H*-comodule; cobraided Hopf algebra.

Classification: AMS(1991) 16W20/CLC O157.1

Document code: A **Article ID:** 1000-341X(1999) 04-0649-05

1. Preliminaries

Throughout this paper, we work over a fixed field k. Let H be a Hopf algebra (bialgebra) with coalgebra structure \triangle , counit ε and antipode S. We write $\triangle(h) = \sum h_{(1)} \otimes h_{(2)}$ for $h \in H$. Unless otherwise stated, all maps are k-linear, \otimes means \otimes_k , Hom = Hom_k, all modules are unital, all H-comodules are left. Our basic reference on Hopf algebra is Sweedler's book [6].

Let H be a bialgebra over k, H is called a cobraided bialgebra, if there exists a bilinear form map r: $H \otimes H \to k, x \otimes y \mapsto r(x \otimes y)$, for all $x, y, z \in H$, satisfying the following conditions:

r is convolution invertible, that is, there exists a bilinear form $\bar{r}:H\otimes H\to R$, such that

$$\sum r(x_{(1)} \otimes y_{(1)}) \bar{r}(x_{(2)} \otimes y_{(2)}) = \sum \bar{r}(x_{(1)} \otimes y_{(1)}) r(x_{(2)} \otimes y_{(2)}) = \varepsilon(x) \varepsilon(y); \qquad (1.1)$$

$$\sum r(x_{(1)} \otimes y_{(1)})x_{(2)}y_{(2)} = \sum y_{(1)}x_{(1)}r(x_{(2)} \otimes y_{(2)}); \tag{1.2}$$

$$r(xy\otimes z)=\sum r(x\otimes z_{(1)})r(y\otimes z_{(2)}); \qquad (1.3)$$

Biography: LI Li-bin (1964-), male, born in Yangzhou county, Jiangsu province. Ph.D, currently an associate professor.

^{*}Received date: 1996-01-15

$$r(x \otimes yz) = \sum r(x_{(1)} \otimes z)r(x_{(2)} \otimes y). \tag{1.4}$$

The bilinear form r is called the universal R-form of H. A cobraided bialgebra is also called a coquasitriangular bialgebra^[3].

Suppose that V is a finite dimensional vector space over k. A linear map $c \in \operatorname{End}(V \otimes V)$ is said to be a solution of the Yang-baxter equation, if c satisfies condition

$$(c \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes c)(c \otimes \mathrm{id}_V) = (\mathrm{id}_V \otimes c)(c \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes c). \tag{1.5}$$

For general theory of algebraic aspects of the Yang-Baxter equation, we refer reader to see [1,2,4].

Now let (H,r) be a cobraided bialgebra, r be the universal R-form, V be an H-comodule with the comodule struction map $\triangle_V: V \to H \otimes V$, $\triangle_V(v) = \Sigma v_{(-1)} \otimes v_{(0)}$. It is well known that the map $c_{V,V}^r: V \otimes V \to V \otimes V$, $c_{V,V}^r(v \otimes s) = \Sigma r(s_{(-1)} \otimes v_{(-1)})s_{(0)} \otimes v_{(0)}$ is a solution of the Yang-Baxter equation.

Suppose that V is a finite dimensional vector space, $c \in \operatorname{End}(V \otimes V)$ is a solution to the Yang-Baxter equation. By FRT construction^[5], we know that there exists a cobraided bialgebra (H,r) such that V is an H-comodule and $c = c_{VV}^r$.

In this present paper, we first give the definition of quantum Yang-Baxter H-comodule, present the relationship between a solution of the Yang-Baxter equation and quantum Yang-Baxter H-comodule; as a application, we give a solution of the Yang-Baxter equation over Hopf algebra H.

2. Quantum Yang-Baxter H-comodule and solution of the Yang-Baxter equation

Definition 2.1 Let (V, \cdot, \triangle_V) be an H-module, H-comodule. We say that V is a quantum Yang-Baxter H-comodule if the following condition holds, for any $h \in H$, $v \in V$

$$\sum h_{(1)}v_{(-1)}\otimes h_{(2)}\cdot v_{(0)}=\sum (h_{(1)}\cdot v)_{(-1)}h_{(2)}\otimes (h_{(1)}\cdot v)_{(0)}. \tag{2.1}$$

Theorem 2.2 Suppose that (H,r) is a cobraided Hopf algebra, (V, \triangle_V) is an H-comodule. Define an action of H on V via $h \cdot v = \sum r(v_{(-1)} \otimes h)v_{(0)}, h \in H, v \in V$. Then we have

- (1) (V, \cdot, \triangle_V) is a quantum Yang-Baxter H-comodule.
- (2) $c_{V,V}^{r}(v \otimes s) = \sum v_{(-1)} \cdot s \otimes v_{(0)}, v, s \in V.$

Proof (1) We first prove that V is an H-module under the action. Let $h, g \in H$, $v \in V$. Notice that $r(1 \otimes h) = r(h \otimes 1) = \varepsilon(h)$, therefore $1 \cdot v = \sum r(v_{(-1)} \otimes 1)v_{(0)} = \sum \varepsilon(v_{(-1)})v_{(0)} = v$, and $h \cdot (g \cdot v) = \sum r(v_{(-2)} \otimes g)r(v_{(-1)} \otimes h)v_{(0)} = \sum r(v_{(-1)} \otimes hg)v_{(0)} = (hg) \cdot v$. It follows that V is an H-module. Second, we prove that V satisfies (2.1). Indeed

$$\sum (h_{(1)} \cdot v)_{(-1)} h_{(2)} \otimes (h_{(1)} \cdot v)_{(0)} = \sum r(v_{(-2)} \otimes h_{(1)}) v_{(-1)} h_{(2)} \otimes v_{(0)}$$

$$= \sum h_{(1)} v_{(-2)} r(v_{(-1)} \otimes h_{(2)}) \otimes v_{(0)} = \sum h_{(1)} v_{(-1)} \otimes h_{(2)} \cdot v_{(0)}.$$

Hence (V, \cdot, \triangle_V) is a quantum Yang-Baxter H-comodule.

(2) For $v, s \in V$, as $c_{V,V}^r(v \otimes s) = \sum r(s_{(-1)} \otimes v_{(-1)})s_{(0)} \otimes v_{(0)}$, by the action of H on V, the above equals $\sum v_{(-1)} \cdot s \otimes v_{(0)}$.

Suppose further that V,W are H-modules, H-comodules. In usual way, we take $V\otimes W$ as an H-module, H-comodule via $h\cdot (v\otimes w)=\sum h_{(1)}\cdot v\otimes h_{(2)},$ and $\triangle_{V\otimes W}(v\otimes w)=\sum v_{(-1)}w_{(-1)}\otimes v_{(0)}\otimes w_{(0)},$ $v\in V,w\in W$. Take $c_{V,W}\colon V\otimes W\to W\otimes V,v\otimes w\mapsto v_{(-1)}\cdot w\otimes v_{(0)}.$ Then we have

Theorem 2.3 Suppose that V is a finite dimensional vector space, c is a solution to the Yang-Baxter equation. Then there exists a cobraided bialgebra (H, r) such that V is a quantum Yang-Baxter H-comodule, and $c = c_{V,W} = c_{V,W}^r$.

Proof It follows easily from FRT construction and Theorem 2.2.

Theorem 2.4 Suppose that H is a Hopf algebra with invertible antipode S, V, W are H-modules, H-comodules. Then

- (1) c_{V,W} is invertible.
- (2) If W is a quantum Yang-Baxter H-comodule, then $c_{V,W}$ is an H-comodule morphism.
 - (3) If V is a quantum Yang-Baxter H-comodule, then $c_{V,W}$ is an H-module morphism.

Proof (1) Take $t_{W,V}$: $W \otimes V \to V \otimes W, w \otimes v \mapsto \sum v_{(0)} \otimes S^{-1}(v_{(-1)}) \cdot w$, then we have

$$t_{W,V}c_{V,W}(v \otimes w) = \sum_{v \in V} t_{w,v}(v_{(-1)} \cdot w \otimes v_{(0)}) = \sum_{v \in V} v_{(0)} \otimes S(v_{(-1)}) \cdot (v_{(-2)} \cdot w)$$

$$= \sum_{v \in V} v_{(0)} \otimes \varepsilon(v_{(-1)})w = v \otimes w.$$

Hence $c_{V,W}$ is left invertible. It is similar to prove that $c_{V,W}$ is right invertible.

(2) Since

$$(\mathrm{id}_{H} \otimes c_{V,W}) \triangle_{V \otimes W}(v \otimes w) = \sum_{(-2)} v_{(-1)} \otimes v_{(-1)} \cdot w_{(0)} \otimes v_{(0)}$$

$$= \sum_{(-2)} (v_{(-2)} \cdot w)_{(-1)} v_{(-1)} \otimes (v_{(-2)} \cdot w)_{(0)} \otimes v_{(0)} = \triangle_{W \otimes V} c_{V,W}(v \otimes w),$$

it follows that $\triangle_{W \otimes V} c_{V,W} = (\mathrm{id}_H \otimes c_{V,W}) \triangle_{V \otimes W}$, so $c_{V,W}$ is an H-comodule morphism.

(3) For any $h \in H, v \in V, w \in W$, since

$$\begin{split} c_{V,W}(h\cdot(v\otimes w)) &= \sum (h_{(1)}\cdot v)_{(-1)}\cdot (h_{(2)}\cdot w)\otimes (h_{(1)}\cdot v_{(0)})\\ &= \sum ((h_{(1)}\cdot v)_{(-1)}h_{(2)})\cdot w\otimes (h_{(1)}\cdot v_{(0)}) = \sum (h_{(1)}v_{(-1)})\cdot w\otimes h_{(2)}\cdot v_{(0)}\\ &= h\cdot c_{V,W}(h\cdot(v\otimes w)). \end{split}$$

It follows that $c_{V,W}$ is an H-module morphism.

Especially, let H be a Hopf algebra. We regard H as a regular H-module, H-comodule. Then we have

Corollary 2.5 Let H be a Hopf algebra, V be an H-module, H-module. Then the following are equivalent:

- (1) V is a quantum Yang-Baxter H-comodule.
- (2) $c_{H,V}$ is an H-comodule morphism.

(3) $c_{V,H}$ is an H-module morphism.

Proof $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3)$ follow from theorem 2.4.

(2) \Rightarrow (1) Since $c_{H,V}$ is an H-module morphism, it follows that $(\mathrm{id}_H \otimes c_{H,V}) \triangle_{H \otimes V} = \triangle_{V \otimes H} c_{H,V}$. Hence, for $h \in H, v \in V$

$$\sum h_{(1)}v_{(-1)}\otimes h_{(2)}\cdot v_{(0)}\otimes h_{(3)}=\sum (h_{(1)}\cdot v)_{(-1)}h_{(2)}\otimes (h_{(1)}\cdot v)_{(0)}\otimes h_{(3)}.$$

Apply ε to the third tensor idems of the equality above, then we obtain (2.1), i.e., V is a quantum Yang-Baxter H-comodule.

 $(3)\Rightarrow (1)$ Since $c_{V,H}$ is an H-module morphism, it follws that for $h,g\in H,v\in V$ we have $c_{V,H}(h\cdot (v\otimes g))=h\cdot (c_{V,H}(v\otimes g))$, i.e.,

$$\sum ((h_{(1)} \cdot v)_{(-1)} h_{(2)}) g \otimes (h_{(1)} \cdot v)_{(0)} = \sum (h_{(1)} v_{(-1)}) g \otimes h_{(2)} \cdot v_{(0)},$$

take g = 1, we obtain (2.1). Hence we completes the proof.

Theorem 2.6 Suppose V, W, U are H-modules, H-comodules, then we have

- (1) $c_{V \otimes W,U} = (c_{V,U} \otimes \mathrm{id}_W)(\mathrm{id}_V \otimes c_{W,U}), \text{ and } c_{V,W \otimes U} = (\mathrm{id}_W \otimes c_{V,U})(c_{V,W} \otimes \mathrm{id}_U).$
- (2) If W is a quantum Yang-Baxter H-comodule, then

$$(\mathrm{id}_U\otimes c_{V,W})(c_{V,U}\otimes\mathrm{id}_W)(\mathrm{id}_V\otimes c_{W,U})=(c_{W,U}\otimes\mathrm{id}_V)(\mathrm{id}_W\otimes c_{V,U})(c_{V,W}\otimes\mathrm{id}_U).$$

(3) If V is a quantum Yang-Baxter H-comodule, then $c_{V,V}$ is a solution of the Yang-Baxter equation.

Proof (1) For any $v \in V, u \in U, w \in W$, we have

$$egin{aligned} &(c_{V,U}\otimes\operatorname{id}_W)(\operatorname{id}_V\otimes c_{W,U})(v\otimes w\otimes u)=(c_{V,U}\otimes\operatorname{id}_W)(\sum v\otimes w_{(-1)}\cdot u\otimes w_{(0)})\ &=\sum (v_{(-1)}w_{(-1)})\cdot u\otimes v_{(0)}\otimes w_{(0)})=c_{V,W\otimes U}(v\otimes w\otimes u). \end{aligned}$$

Hence the first equality holds. Simlarly, we can prove the second.

(2) Since

$$egin{aligned} (\operatorname{id}_{U}\otimes c_{V,W}) & (c_{V,U}\otimes\operatorname{id}_{W}) & (\operatorname{id}_{V}\otimes c_{W,U}) & (v\otimes w\otimes u) \ &= \sum (v_{(-2)}w_{(-1)})\cdot u\otimes v_{(-1)}\cdot w_{(0)}\otimes v_{(0)} \ &= \sum ((v_{(-2)}\cdot w)_{(-1)}v_{(-1)})\cdot u\otimes (v_{(-2)}\cdot w)_{(0)}\otimes v_{(0)} \ &= (c_{W,U}\otimes\operatorname{id}_{V}) & (\sum v_{(-2)}\cdot w\otimes v_{(-1)}\cdot u\otimes v_{(0)}) \ &= (c_{W,U}\otimes\operatorname{id}_{V}) & (\operatorname{id}_{W}\otimes c_{V,U}) & (c_{V,W}\otimes\operatorname{id}_{U}) & (v\otimes w\otimes u). \end{aligned}$$

Hence (2) holds.

(3) Take V = W = U and use Theorem 2.4(1).

3. Applications

Suppose that H is a Hopf algebra. It is well known that H is an H-module algebra via $h \cdot g = \sum h_{(1)} gS(h_{(2)})$, on the other hand, H is a regular H-comodule. Moreover we have

Theorem 3.1 (1) H is a quantum Yang-Baxter H-comodule.

(2) $c_{H,H}(h \otimes g) = \sum h_{(1)}gS(h_{(2)}) \otimes h_{(3)}$ is a solution to the Yang-Baxter equation.

Proof (1) Take $h, g \in H$, on the one hand

$$\sum h_{(1)}g_{(1)}\otimes h_{(2)}\cdot g_{(2)}=\sum h_{(1)}g_{(1)}\otimes h_{(2)}g_{(2)}S(h_{(3)}).$$

On the other hand

$$\sum (h_{(1)} \cdot g)_{(1)} h_{(2)} \otimes (h_{(1)} \cdot g)_{(2)} = \sum (h_{(1)} g S(h_{(2)}))_{(1)} h_{(3)} \otimes (h_{(1)} g S(h_{(2)}))_{(2)}$$

$$= \sum h_{(1)} g_{(1)} S(h_{(4)}) h_{(5)} \otimes h_{(2)} g_{(2)} S(h_{(3)}) = \sum h_{(1)} g_{(1)} \varepsilon(h_{(4)}) \otimes h_{(2)} g_{(2)} S(h_{(3)})$$

$$= \sum h_{(1)} g_{(1)} \otimes h_{(2)} g_{(2)} S(h_{(3)}).$$

It follows that H is a quantum Yang-Baxter H-comodule.

(2) It follows from Theorem 2.6(3).

Corollary 3.2 Suppose that G is a finite group, $G = \{g_1, g_2, \dots, g_n\}$, then $c \in \text{End}(kG \otimes kG)$, $c(g_i \otimes g_j) = g_i g_j g_i^{-1} \otimes g_{(i)}$, $(i, j = 1, 2, \dots, n)$ is a solution to the Yang-Baxter equation.

Acknowledgements The authors would like to thank Prof Cai Chuanren and Chen Huixiang for their comments.

References:

- [1] LAMBE L A, RADFORD D E. Algebraic aspects of the quantum Yang-Baxter equation [J]. J. Alg., 1992, 154: 228-288.
- [2] RADFORD D E. Solutions to the quantum Yang-Baxter equation and Drinfel'd double [J]. J. Alg., 1993, 161: 20-33.
- [3] MAJID S. Quasitriangular Hopf algebra and Yang-Baxter equation [J]. Internat. J. Modern Phys., 1990, A5: 1-91.
- [4] DRINFELD V G. Hopf algebras and the quantum Yang-Baxter equation [J]. Soviet Math. Dok., 1985, 32: 254-258.
- [5] KASSEL C. Quantum Groups [M]. Springer-Verlag, New York, 1995.
- [6] SWEEDLER M C. Hopf Algebra [M]. Benjamin, New York, 1969.

Yang-Baxter 方程的解与量子 Yang-Baxter H- 余模

李立斌1, 魏俊潮2

- (1. 中国科学技术大学数学系, 合肥 230026;
- 2. 扬州大学数学系, 扬州 225002)

摘 要: 设 H 是域 k 上的 Hopf 代数. 本文首先讨论了量子 Yang-Baxter H- 余模与 Yang-Baxter 方程的解的关系; 然后作为应用, 给出了任意 Hopf 代数上 Yang-Baxter 方程的一个解.