Journal of Mathematical Research & Exposition
Vol.19, No.4, 659-666, November 1999

An Algorithm for Polynomials That Commute with a
Permutation Polynomial over a Finite Field *

Chong-Yun Chao', Hong Zhang®

(1. Dept. of Math., University of Pittsburgh, Pittsburgh, PA 15260;
2. Dept. of Math. Sci., Indiana-Purdue University, Fort Wayne, IN 46805)

Abstract: An efficient algorithm for determining polynomials that commute with a
permutation polynomial over a finite field is given. The complexity of the algorithm is
discussed and examples of applying the algorithm are also provided.

Key words: algorithm; polynonual; finite field.
Classification: AMS(1991) 12E/CLC 0153.4
Document code: A Article ID: 1000-341X(1999)04-0659-08

1. Introduction

Let p be prime, n be a positive integer, and F, = GF(p") be the Galois field with
g = p" elements. A polynomial f(z) over F, is said to be a permutation polynomial if
f(z), considered as a function from F; to Fy, is a bijection.

Given a permutation polynomial f(z) over F,, we consider the problem of determining
all polynomials (or all permutation polynomials) g(z) over Fj such that f(g(z)) = g(f(z)),
for all in Fy, i.e., g commutes with f as functions on Fy.

In [5], Wells characterized the polynomials that commute with a translation f(z) =
z+a. In [4], Mullen characterized the polynomials that commute with a linear permutation
polynomial f(z) = az + b. In [2], the general problem of determining polynomials that
commute with an arbitrary permutation polynomial f(z) was studied based upon the
concept of centralizer rings by Schur.

Here we present an efficient algorithm and its implementation to determine the set
of polynomials that commute with a given permutation polynomial over a finite field. A
variation of the algorithm can be used to determine the set of permutation polynomials
that commute with a given permutation polynomial. A detailed complexity analysis of
the algorithm is given. It is compared to the complexity of the “brute force” appoach. By
using the algorithm some examples are also provided.

Our algorithm is based on the results given in [2]. For convenious, we give a summary
of the main results in [2].

*Received date: 1997-03-12

— 659 —

Let M, «. be the set of all n X n matrices that on each row there is exactly one 1 and
all other entries are 0. Let D,, = {0,1,---,n —1}. To each function f : D,, — D,, there is
a corresponding matrix Ay = (a;;) in Mpxp With a; 43 = 1fori=0,1,2,---,n — 1 and
all other entries 0.

Let G be a permutation group acting on D,, and R be a ring with identity. For a
permutation ¢ in G, let P, be the permuation matrix corresponding to o. The centralizer

ring Cp(G) is defined as
Cr(G) = {E; E is an n X n matrix over R, and P,E = EP, for every o € G}

Then it is proven in [2] that a function ¢ in F commutes with o, for every o € G if
and only if A; € Cr(G) N Mypx,. As a corollary, the set of functions commuting with a
single permutatlon o corresponds to the set of matrlces Cr(G) N M,,«n, where G is the
cyclic group generated by o.

To construct a basis for the R-module Cr(G), we define a relation ~ on the set D,, x D,
as follows: (%,7) ~ (r,s) if and only if there exists a ¢ in G such that ic = r and jo = s.
Since G is a group, this relation is an equivalence relation on D, x D,. Denote the
equivalence classes by Ej, Es,---, Er and corresponding to each E;,1 < t < k, define an
n X n matrix B, = (b} ;) by

bt__{ 11 if(ivj)EEta
13

0, otherwise.

It is shown that {By, By, -+, Bt} is a basis of the R-module Cr(G).

This provides a description of the structure of the functions that commute with the
permutation in terms of matrices. It also gives a way to enumerate such functions. A
permutation is said to be of type (n1,n2,---,n,) if in the cycle decomposition the number
of k-cycles is ni. Let the permutation cooresponding to f(z) be of type (n1,na,---,n,).
The number of functions that commute with f(z) is

IO dny).
ko jlk
The number of permutation functions that commute with f(z) is

fliteey

k=1

2. An algorithm

Based on the results in [2], we may devise an efficient algorithm to obtain all polyno-
mials commuting with a give permutation polynomial.

Step 1. Evaluate the polynomial f(z) to obtain a permutation o on F,.

Step 2. Find the cycle decomposition of o, the permuation 7 that has the same cycle
structure as o with its cycles arranged in increasing order. Determine the permutation p
that maps the symbols of o to 7, ie., 0 = p~lrpu.

— 660 —

Step 3. Construct the matrix that represents the centralizer ring

Al,l 0 .
Azy Azs oo |,

where the matrix is partitioned according to the lengths of the cycles in 7. A;; are
circulant matrices and if the number of columns does not divide the number of rows
A;; = 0. Determine the functions hq, hs,- - -, by that commute with T by choosing in the
above matrix one 1 entry in each row.

Step 4. Apply the mapping g;(z) = p~!(hi;(u(z))) to obtain functions that commute
with o.

Step 5. Interpolate the functions to obtain polynomials that commute with f(z).

The algorithm for determining all permutation polynomials that commute with f(z)
is similar to the above algorithm. We only need to add a test for one-to-one function at
Step 3.

When the algorithm is implemented, it is not necessary to explicitly construct the
matrix in step 3. Because of the circulant structure of the blocks of the matrix, the
information needed for constructing the functions can be easily obtained from the size of
the blocks. Hence we only need to stored the block sizes (i.e., the lengths of cycles) in a
one dimensional array. This will significantly reduce the storage requirement.

In implementing the Lagrange interpolation, we may take advantage of the fact that
in the finite field F,,

H (z—a)=29—=2

acF,

H a=—-1.

acFg\{0}

Therefore, the interpolation formula is simplified to

g(z) = D —f(a)ba(z),
a€Fy
where b,(z) = (2? — z)/(z — a).

An inplementation of the algorithm is given by the following pseudocode.

The finite field GF(p™) is implemented as an n-dimensional vector space over Z, with
the multiplication defined as in Z,[z]/(m(z)) where m(z) is an irreducible polynomial of
degree n over Z,. We apply Berlekamp’s factorization algorithm in [1] for polynomials
over a finite field to find the irreducible polynomial m(z). The elements of the finite field
are denoted by ap,a;, -, a4-1.
input p and n of GF(p™); ¢ := p"
construct irreducible polynomial of degree n over Z,,; initialize field operations
input f()
for i := 0 to ¢ — 1 do o[¢] = f(a;)
find cycle decomposition of o;k :=number of cycles

— 661 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

sort cycles in increasing order and obtain 7
set u to the mapping of symbols from ¢ to 7; comupte p~
set [to lengths of cycles
for i:= 0 to k£ do
begin
index:= 0
for j:=0to k do
begin
if {[7)![j] then
begin
for m := 0 to I[j] — 1 do begin s[i][index] = a[j] + m; index := index + 1 end
end
end
s[i][index] = —1
end
clear f index to 0; next:=TRUE
while next
begin
construct function h from f index
g:=pthy
poly:= 0
for i := 0 to ¢ — 1 do poly:= poly — g[i] x (2? — z)/(z — a;)
output poly
index:= 0; next:= FALSE;7:= 0
while next=FALSE and i < k) do _
if s{i]f[¢] + 1] > 0 then begin f index[i] := f index[i] + 1; next:=TRUE end
else f index[i] := 0
end
end

1

3. Complexity

In this section we give a complexity analysis of our algorithm and compare it with the
complexity of the “brute force” approach. We will only consider the field operations in
the algorithms, since they are the most complicated operations and other operations in
our algorithm such as the integer comparisions in step 3 are insignificant comparing to
field operations.

We assume that the “brute force” approach to the problem is to exame every poly-
nomial g(z) of degree less than ¢ for commutativity with f(z) by evaluating f(g(z)) and
g(f(z)) at every element of the finite field.

Since there are ¢? polynomials of degree less than ¢ and there are ¢ elements in the
finite field, 4¢?*! polynomial evaluations are needed in the brute force approach. To count
the number of field operations, we assume that Horne's method is used for polynomial
evaluations. Evaluating a polynomial of degree m at one point requires 2m operations (m

— 662 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

multiplications and m additions). In the worst case when the degree of f(z)is ¢ — 1, and
evaluation of f(z) requires 2(¢ — 1) operations. There are (g — 1)¢™ different polynomials
of degree m for m > 0 and one 0 polynomial. Hence the total number of field operations
in the worst case is

q—1

> 2[2(g -~ 1) + 2mlg(g — 1)¢™ = O(¢*?).

m=0

On average, assume that the degree of f(z) is (¢ — 1)/2 and that the average number
of points to evaluate for each polynomial is ¢/2. Then the number of field operations is

qg—1

Y 202(g - 1)/2+ 2m](g/2)(g — 1)g™ = O(¢**?).

m=0

The complexity for finding all permutation polynomials that commute with f(z) using
the “brute force” approach is the same as the above.

In our algorithm, it requires ¢ evaluations of polynomial f(z) to obtain the permutation
o. A division of 29 — z by z — a requires 3¢ field operations. Hence, each interpolation in
the simplified form needs ¢(3¢) operations.

In the worst case, there are ¢? functions commuting with f(z). ¢! of them are permu-
tations. Hence to find all polynomials the total number of field operations needed in our
algorithm is

2(¢ - 1)* + ¢(39)¢” = O(¢**?).

To find all permutation polynomials, the total number of field operations is

2(q - 1)* + q(3¢)¢! = 0(¢* - ¢').

Even in this worst case (which occurs only when f(z) = z), our algorithm still offers
an improvement. However, the main advantage of our algrithm is that it only generates
the polynomials that are actually needed in the result, and that it does not need to process
in any way the other polynomials. The “brute force” method, on the other hand, must
always test all ¢? polynomial functions. Since the number of polynomials that commute
with f(z) is usually much less than the number of all polynomials, in the average case our
algorithm is significantly more efficient than the “brute force” approach.

In the average case, assume again that the degree of f(z) is (¢ — 1)/2. The number of
permutations of type (nq,ns,---,ng) is |

- 1
! —.
1 kl:I_l nk!(k”k)

Hence the average number of polynomials of degree less than ¢ that commute with a given
permutation polynomial is

w1
S i)

(nim2ng) ko jlk

— 663 —

where the sum is over all partitions of g.
Similarly the average number of permutation polynomials that commute with a given

permutation polynomial is
> IIr=»le),

(n1m2,ng) k

where p(q) is the number of partitions of ¢. It is well known that (see [3})
p(g) = 0(e™V3VA),

This is clearly a significant improvement over the “brute force” approach.

4. Examples

In this section we present some examples of using the algorithm in section 2 and the
results of the implementation.

Example 1 Consider the polynomial f(z) = ¢ 4+ «a over the finite field Fy, where a is
a primitive element of Fy. It is easy to verify that f(z) is a permutation polynomial.
Applying our algorithm, we ohtained the following 16 polynomials that commute with
f(z).

az? + az,

22+ (a+ 1)z +a,

z+1,

(a+ 1)z + (a +1),

22 + (a + 1)z,

az? + az + «,

(a + 1)z + 1,

z+ (a+1),

z,

(a + Dz + a,

az? + az + 1,

22+ (a+ 1)z + (a + 1),

(a+ 1)?,

T+ a,

22+ (a+1)z+1,

az? + az + (a+1).

Example 2 Let f(z) = 215 + 162 + 23 + 1622 + 2! +1621° + 2% 4 1628 + 27 + 162 +
z° + 162* + 2° + 1622 + 2z. Then f(z) is a permutation polynomial over Fy;. Applying
our algorithm, we obtain the following 17 polynomials that commute with f(z).

0,

— 664 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

z,
e 4162 4 213 4+ 162:12 +21 4+ 162+ 2%+ 1628+ 27 + 162 + 25 + 162% + 23 +162% + 2z,
3z1% 41221 4 9213 4 162! 4 3210 4 102° + 1528 4 327 4 1228 + 92° + 1623 + 322 + 11z,
621% 4 3214 4 2213 + 422 4 42! + 5210 + 42° + 1628 + 425 + 162° + 132* + 1123 4 22,
102% 4+ 42" + 15213 4+ 3212 + 8211 + 6210 + 1528 + 427 + 526+ 122% + 122* 4 1523 + 222 + 132,
1521341321 + 42134 721245211 + 42104 102°+ 1628 + 1627+ 1325+ 62° 4 82* + 23 + 422 4 32,
42 4+112M 41623+ 3212 +12211 + 132204+ 72%4+ 1027+ 1528+ 1125+ 122% + 1123 + 1222 +- 62,
1122 4+ 1321 + 2213 4 1622 4 621 + 4210 4+ 22% + 28 + 327 + 132°% 4 82° + 162* + 422 + 11=,
2215 + 42 + 1521 + 1127 4 102° + 92° + 9z,
11215 + 421 4+ 2233 + 212 4 6211 + 13210 + 22° + 1628 + 327 + 425 + 82° + 24 + 1322 + 1le,
4215 4 6214 + 162134 14212+ 122 + 4219 + 729+ 1027 + 226 + 112° 4+ 52* + 1123 + 522 4 6z,
1521+ 421 + 4213 41022+ 5211 + 13210 +102° + 28 + 1627 +42° +62° + 92 + 23+ 1322 4 32,
10254132 +15213 4+ 142124+ 8211 +112104 228 + 427+ 1228+ 122%+ 52* + 152° + 1522+ 132,
621° + 14214 + 2213 + 13212 + 421 + 12210 + 42° + 28 + 1328 + 162° + 42 4+ 1123 + 1622,
321% 4+ 52 4+ 9213 4+ 16211 + 14210 + 102° + 228 + 327 + 525 + 92% + 162 + 142% + 11z,
z15+z14+z13+:c12—{—1:11+:z:10+:1:9—{—:c8+z7+:c6—+—:cs+:c4+:c3+:cz+21:.

Note if the “brute force” method is applied to this example, over 17*7 field operations
are required, which is certainly beyond the capibility of any computer.

Example 3 Over the finite field Fig, let f(z) = az® + az’® + 2* + (a2 + 1)2% + (a +
1)z% + a’z + 1, where a is a primitive element. The following is list of 15 polynomials
that commute with f(z). All of them are permutation polynomials.

z,

(a2 +a+ 1)::(5 + (012 + oz):z:5 + az? + (a2 + 1):c2 + (oz2 + a+ 1)z,
(a2 4+ a+ 1).1:G + (oz2 + a4+ 1);1:4 + a2+ 22 + azz,

(oz2 + 1):1!:G + o’z + (a+ 1):::4 + (c)zz)z3 + (a2 + oz)ar:2 +az + 1,

az® + az® + 2% + (a2 + 1)z3 + (o + 1)132 + oz +1,
az6+a2z5+a2:c4+33+(a2+a+1)22+(az+a+1)z+1,

az’® + (a+ 1V)z* + (a + 1)z2* + &®2? + (@ + a + 1)z + q,

(@®+ 1)z + (2 +a)z® +2* + (a+ 1)z° + 22 + 2 + q,

(a2 + 1):1r:G + a2zt + (012 4+ a+ 1)91:3 + ((12 + 1):c2 + az + a,

az® + (@ + 1)z° + (a+ Dzt 4+ (e + D)2? + (o + a)z + (a + 1),
(@®+ 1)z + (a + 1)2° + 2* 4+ (a + 1),

(@®+ 1)z’ + (a® + 1)2° + o?2* + o?2° + o’ + (a + 1)z + (a + 1),
(a2 + 1):1:6 + (a2 +a+ 1):(:5 + (OLZ + a):c4 + oz + (a + 1):1:2 +z+ az,

— 665 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

az® + z2° + a2t + az® + (a2 + oz)ar:2 + (a2 +a+l)z+ a?,
az® + (a® + a+1)z° + 2* 4+ (a? + a)z® + az? + o’z + a’.

References:

[1] BERLEKAMP E R. Factoring polynomials over finite field [J]. Bell System Tech. J., 1967,
46: 1853-1859.

[2] CHAO CY. Polynomials over finite fields which commute with a permutation polynomial [J].
J. of Algebra, 1994, 163(2): 295-311.

(3] HUA L K. Introduction to Number Theory [M]. Springer-Verlag, Berlin, 1982.

[4] MULLEN G L. Polynomials over finite fields which commute with linear permutations [J].
Proc. Amer. Math. Soc., 1982, 84: 315-317.

[5] WELLS C. Polynomials over finite fields which commute with translation [J]. Proc. Amer.
Math. Soc., 1974, 46: 347-350.

— 666 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

