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A Generalized Markov Inequality *
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Abstract: This paper gives a generalized Markov inequality f_ll f(4PDdz <

f_ll FUIP|T; )dz for every polynomial P of degree at most n provided that f’ is con-
tinuous and strictly increasing on [0, c0), where || - || denotes the uniforin norm and 7T,
stands for the n-th Chebyshev polynomial of the first kind.
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1. Introduction

Denote by P, the set of polynomials of degree at most n and by T;, the n-th Chebyshev
polynomial of the first kind. Let || - || stand for the uniform norm and write

1
F(P):= [ f(IP@))a.
This paper deals with a generalized Markov inequality
F(P') < F(|P|T,), P €Pn. (1.1)

Several authors studied this inequality. In 1982, using a variational approach, Bojanov
obtained an extension of the Markov inequality:

Theorem APl Let 1 < p < 0o and f(z) = 2”. Then the inequality (1.1) holds and the
equality is attained if and only if P = %||P||T,..

Meanwhile, in 1982, using a variational approach and a technique different from (2],
Bojanov solved a conjecture proposed by Erdos in 1939 in [4]:
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Theorem BPl Let f(z) = (14 22)Y/2. Then the inequality (1.1) holds and the equality
is attaiend if and only if P = +|| P||T,,.
In 1984, using the idea of [2], Zhou extended the result of Theorem A:

Theorem CU! Let f satisfy the conditions:

(a) f(z) is increasing on [0, 00);

(b) f(z) is strictly convex on [0, 00);

(c) £(0) =o0.
Then the inequality (1.1) holds.

But, we observe that Condition (c) of Theorem C restricts its use. Following the idea of
Bojanov in (3] and using Lagrange’s method of multipliers, we will establish a generalized
Markov inequality (1.1), dropping Condition (c) in this paper. That is the following

Theorem 1 Assume that the function f is continuously differentiable on [0,00) and
satisfies the condition:

f(2) - 2f/(2) < £(0) < f(z), = € (0,00). (1.2)

Then (1.1) holds and the equality occurs if and only if P = +||P||T,.
As a consequence of Theorem 1 we state

Theorem 2 Assume that the function f' is continuous and is strictly increasing on [0, 00).
Then (1.1) holds and the equality occurs if and only if P = +||P||T,. ,

This result also provides a characterization of the Chebyshev polynomials T},. Now by
Theorem 2 it admits the following extension:

flz)=(a+bz”)? ab>0, 1<p<oo

since
bazP )(P-l)/l’

/ ! — bl/p(
f(=) v

satisfies the conditions of Theorem 2.
2. Auxiliary Lemmas

Let M > 0 be a fixed number. Following Boja.nov[Z] we define the sets Qym C wm C Py
as follows. ) € wp if and only if @ € P, has exactly m—1 extremal points z; = z;(Q), i =
1,...,m—1lin (-1,1),

~l=20< 21 < ... < Cy1 < Ty = 1 (2.1)

Q € Qm if and only if Q € wm and |Q(z:(Q))| = M,i = 0,1,---,m. For convenience let
r(z) := g(z) — 2z¢'(z) and

Then we have
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Lemma 1 Assume that the function g € C[0, 00) satisfies the conditions:
2g'(z?) € C[0,0); r(z) < g(0) < g(z), = € (0,00). (2.2)

If P € wyy, is a solution of the programming problem

G(Q' 2.3
Joax (@) , (2.3)
subject to
el < M, (2.4)
then P € Qp,.

Proof For simplicity write y; := z;(P),7 = 0,1,---,m. Then we have

Claim 1. There exists a vector A = (Ag, ..., A;p, 1), A > 0, such that

/_ 11 g'[P'(2)")P'(2)R (2)dz — 3 A\:P(yi)R(w:) =0, VR € Pn, (2.5)
X[P(y:): - M%) =0, i=0,1,---,m. (2.6)

To prove this claim we need a basic result, in which

Vh(y) = (3gif),..., 8;35:))1

Xy

Theorem DU Theorem3.4l Agime that go, g1, - -, g are continuously differentiable on an
open set S C R". Ify € S is a solution of the problem to minimize go(x) subject tox € §
and g;(x) <0, ¢ =1,2,---,m, then there exists a vector A = (Ao, A1, "+, Am) # 0,A > 0,
such that

> AiVai(y) =0
=0
and
Aigi(y):O, 1=1,2,---,m.
Let Q € wy, and Q(z) = 17 ajz?. Then (2.4) is equivalent to
Q(ri)z SMzi i:011,"'am *(27)

and P is also a solution of the programming problem (2.3) subject to (2.7) with Q € wpm.
By Theorem D there exists a nonzero vector A = (Ao, -+, Am+1), A > 0, such that (2.6)
holds and

oG(Q’ e 0 i . '
_’\m+1 (Q ) + 22’\162(2:1) Q(x ) = 07 J= Oal’ IR LY (28)
Ja; = Oa; 0-p
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It is easy to calculate that

._2 =14
(9aJ ]/ (2)e -

Meanwhile we point out that

= (2;). (2.9)

In fact, it is trivial for i = 0 and z = m. For 1 <7 < m — 1 we see

9Q(z:) 0z:(Q).
aaj '_( ) +Q( ) 3(1]

Since z; is an extremal point of @, there is an index k > 1 such that

Q(z:)=--=Q% V() =0, Q)N(z;)#0,

dxi (

and it suffices to show |~ Q)I < 00. But this fact follows from the equation

9z:(Q)
da;

3Q(2k‘1)(zi)

(2k)
aaj + Q (z‘l)

=0,

which may be obtained by partially differentiating the relation Q(**~1)(z;) = 0. This
proves (2.9). Then (2.8) becomes

1 . m )
mad [ S PEPIP @) e + Y NP wY =0, =01, n.
-1 1=0

Let R(z) = 374 c;z’. Multiplying the above j-th equation with ¢; and summing the
resulting equations gives

1 m
A / ¢[P'(2)2)P'(2)R (2)dz + 3 NP (i) R(3:) = 0. (2.10)
-1 1=0
In particular, setting R = P yields
1 m
—Amt1 / ¢'[P'(2)*]P'(z)*dz + Z MP(y:)? = 0.
-1 1=0

This equation means A, 41 # 0, for otherwise, taking into account (2.6), we conclude
YoitoAi =0,1.e, A =0 (because A > 0), contradicting A # 0. So we can suppose without
loss of generality that A,,41 = 1 and hence (2.5) follows from (2.10). This proves Claim 1.

Claim 2. We have
A>0, i=0,1,---,m. (2.11)
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To find a formula for ); let L(z) := (22 — 1) P(z) and
L(z)

i = ) = ’ 1’ R RS
Li(z) p— i=0 m
Substituting R = L; into (2.5) gives
1
XNiP(yi)L (i) = / ¢'[P'(z)*|P'(z)Li(z)dz, i=0,1,---,m. (2.12)
-1

It is particularly simple to prove (2.11) for ¢ = 0 and ¢ = m; we do this for ¢ = m. In this
case by integration by parts (2.12) gives

MPOIW) = [ JPEIPEIPE) + 2+ )P (@)
[ PP de+ 3 [ (e 0del))

2] _ 5/_17‘[13'(95)2]@

: / Jdz < 9(0) < g[P'(1)?)

Thus A, P(1)L’(1) > 0 and hence A, > 0.
Now assume 1 < ¢ < m —1. Put I(d) = [-L,yi —d] U [y + d,1] with 0 < d <
mino<i<m-1(Y%i+1 — %), ¢(z) := (2 - 1)/(z — y:), and

Md) = [ g1P () IP () )

By (2.2)

Again by partial integration
W@+ [ P = [ {glP@ ) + 2P (@)P () P (e)ale) ) de
I(d)

I(d)
= g[P'(yi - d))q(yi — d) — g[P'(: + d)*)q(y: + d).

Thus
yi—d

2A(d) = {g[P'(yi —d)’Jq(y; — d) - /

J—1

AP (el +
{~otPt+ ety + ) - [ (Pl (e)ae)

= Ay(d) + Aq(d). (2.13)
To estimate A;(d) we break the integral into two parts over [—1,y;_1] and [y;_1, ¥ — d].
For the first integral with 7 > 1, noting that ¢’(z) = 1+ (1 — ?)/(z — v:)®> > 0 on I(d), by
the mean-value theorem for integrals, there is a point £ € [—1,y;_1] such that

1

/ " P (2)2)g (2)da = r[P(6:)?) / 1 ¢'(z)dz = r[P'(&1)"a(yi-1)- (2.14)

-1
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This formula remains true for 7 = 1, because in this case each term in (2.14) is zero.
Moreover, by (2.2)

yi—d

/yyi_dr[P’(z)z]Q’(z)dz < g(o)/ ¢'(z)dz = g(0) [g(y: — d) — g(vi-1)].  (2.15)

Then (2.13)-(2.15) by (2.2) leads to
A(d) > {g(0) - r[P'(&)"}a(wi-1) + {9[P'(3: — d)*] — 9(0)}a(y: — d)
> {9(0) = r[P'(&1)"I}a(yi-1).

Similarly we can get
Az(d) > —{g(0) - r[P'(&2)’I}a(visn),
where &, € [yi+1,1]. Finally by (2.13) and (2.2)

AiP(yi) L' (yi) = lim A(d)

> 5 {s0)-rtP@ )} [}—i—] + 5 {90 - P&} [lly—zt > 0.

Yi — Yi Yit1 — Ya

Hence ); > 0. This proves (2.11). So by (2.6) we obtain P(y;)? = M?, i = 0,1,---,m,
which means P € Q,. O

Lemma 2 Let g satisfy (2.2). If P € Qyq then
G(P') < G(IIPIT,) | (2.16)
holds and the equality occurs if and only if P = +||P||T,.

Proof The proof follows the idea of [3]. Note first by (2.2) that the inequality y > 2 > 0
implies
yg(y~?) — 29(z7%) < g(0)(y - 2). (2.17)

In fact, by the mean-value theorem for derivatives it follows from (2.2) that

y9(y™?) = 29(z7%) = [2g(2 ™ amely — 2) = r(€7%)(y — 2) < g(0)y — 2).

Suppose that [—1,1] = U2, I; is the partition of [~1,1] induced by P and the intevals
I = [z, 23] and I = [2], z3] are corresponding in the sense of [3]. We need the following

Lemma ABLemma 2l 655606 that P € Qm,y € (=M, M), and k € {0,1,...,m}. Let ¢
and 7 satisfy the conditions
ey, MT.,(§) =y, nel, P(n)=y.

Then |P'(n)] < |MT(£).
Let u(y) and v(y) be the inverse functions of P(z) and M T,(z)in [ and I*, respectively.
Since

M) = S ¥ (~M,00), (2.18)
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by Lemma A |v'(y)| < |v/(y)| holds for all y € (—M, M). Then (2.17) leads to
/_AL |w/(y)lglw'(y)"*dy < /_ |v'(¥)lglv'(y)~*]dy+4(0) {ﬁ y)ldy ~ / |dy}

By means of (2.18) the above inequality becomes, noting that both u'(y) and v'(y) do not
change sign in (— M, M),

[ alP@ie < [ T (@) e + 9(0)122 — 21l - 155 - 1)

2
Summing the above inequalities for I = Iy, -, I, and uing (2.2) yields, in which |I*| =
z3 — 7,

6Py < [ aMT(e) e+ g(0){2 - UL

+=0"4
= G(MT,)+ g(0){2 — Uo7} - g(M*T;(2)"]de
RN
< G(MTL).

The equality occurs if and only if U™ I7 = [—1,1], which according to the definition of
I'’s in {3] means P = + MT,, = :{:||P|]T (because ||P]| = M for P € Q). O

3. Proofs
3.1. Proof of Theorem 1

Since P € P, implies that there is an index m,1 < m < n, such that P € wpn,
according to Lemmas 1 and 2 to prove Theorem 1 it is enough to verify that the function
g(z) = f(2z!/?) satisfies (2.2). In fact, we have that zg'(2®) = 1 f/(z), which belongs to
C[0,00). Meanwhile, by (1.2) we have r(z) = f(2'/2) — 2V/2f'(2'/?) < f(0) < f(2/?) for
z > 0, which means r(z) < g(0) < g(z). O

3.2. Proof of Theorem 2

It suffices to verify (1.2). By the mean-value theorem of derivatives for some point
£,z > £ > 0, we have that f(z) — f(0) = f'(€)z and 0 < f'(£) < f'(z), which means
f(z) —=f'(=) < f(0) < f(z). O
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