A Generalized Markov Inequality *

SHI Ying-guang

(Institute of Computation, Hunan Normal University)

Abstract: This paper gives a generalized Markov inequality $\int_{-1}^{1} f(|P'|) dx \leq \int_{-1}^{1} f(|P||T'_n) dx$ for every polynomial P of degree at most n provided that f' is continuous and strictly increasing on $[0, \infty)$, where $||\cdot||$ denotes the uniform norm and T_n stands for the n-th Chebyshev polynomial of the first kind.

Key words: generalized Markov inequality; Chebyshev polynomials.

Classification: AMS(1991) 41A17/CLC O174.41

Document code: A Article ID: 1000-341X(1999)04-0673-07

1. Introduction

Denote by \mathbf{P}_n the set of polynomials of degree at most n and by T_n the n-th Chebyshev polynomial of the first kind. Let $\|\cdot\|$ stand for the uniform norm and write

$$F(P) := \int_{-1}^{1} f[|P(x)|] \mathrm{d}x.$$

This paper deals with a generalized Markov inequality

$$F(P') \le F(||P||T_n'), \quad P \in \mathbf{P}_n. \tag{1.1}$$

Several authors studied this inequality. In 1982, using a variational approach, Bojanov obtained an extension of the Markov inequality:

Theorem A^[2] Let $1 and <math>f(x) = x^p$. Then the inequality (1.1) holds and the equality is attained if and only if $P = \pm ||P||T_n$.

Meanwhile, in 1982, using a variational approach and a technique different from [2], Bojanov solved a conjecture proposed by Erdös in 1939 in [4]:

Foundation item: Supported by National Natural Science Foundation of China (19671082)

Biography: SHI Ying-guang (1942-), male, born in Liyang county, Jiangsu province. Currently professor at Hunan Normal University.

^{*}Received date: 1997-01-24

Theorem $B^{[3]}$ Let $f(x) = (1 + x^2)^{1/2}$. Then the inequality (1.1) holds and the equality is attained if and only if $P = \pm ||P|| T_n$.

In 1984, using the idea of [2], Zhou extended the result of Theorem A:

Theorem $C^{[5]}$ Let f satisfy the conditions:

- (a) f(x) is increasing on $[0, \infty)$;
- (b) f(x) is strictly convex on $[0, \infty)$;
- (c) f(0) = 0.

Then the inequality (1.1) holds.

But, we observe that Condition (c) of Theorem C restricts its use. Following the idea of Bojanov in [3] and using Lagrange's method of multipliers, we will establish a generalized Markov inequality (1.1), dropping Condition (c) in this paper. That is the following

Theorem 1 Assume that the function f is continuously differentiable on $[0,\infty)$ and satisfies the condition:

$$f(x) - xf'(x) < f(0) < f(x), \quad x \in (0, \infty).$$
 (1.2)

Then (1.1) holds and the equality occurs if and only if $P = \pm ||P|| T_n$.

As a consequence of Theorem 1 we state

Theorem 2 Assume that the function f' is continuous and is strictly increasing on $[0, \infty)$. Then (1.1) holds and the equality occurs if and only if $P = \pm ||P||T_n$.

This result also provides a characterization of the Chebyshev polynomials T_n . Now by Theorem 2 it admits the following extension:

$$f(x) = (a + bx^p)^{1/p}, \quad a, b > 0, \quad 1$$

since

$$f'(x)=b^{1/p}\left(rac{bx^p}{a+bx^p}
ight)^{(p-1)/p}$$

satisfies the conditions of Theorem 2.

2. Auxiliary Lemmas

Let M>0 be a fixed number. Following Bojanov^[2] we define the sets $\Omega_{\mathbf{m}}\subset \omega_{\mathbf{m}}\subset \mathbf{P}_n$ as follows. $Q\in \omega_{\mathbf{m}}$ if and only if $Q\in \mathbf{P}_n$ has exactly m-1 extremal points $x_i=x_i(Q),\ i=1,...,m-1$ in (-1,1),

$$-1 = x_0 < x_1 < \dots < x_{m-1} < x_m = 1; (2.1)$$

 $Q\in\Omega_{\mathbf{m}}$ if and only if $Q\in\omega_{\mathbf{m}}$ and $|Q(x_i(Q))|=M, i=0,1,\cdots,m$. For convenience let r(x):=g(x)-2xg'(x) and

$$G(P) := \int_{-1}^1 g[P(x)^2] \mathrm{d}x.$$

Then we have

Lemma 1 Assume that the function $g \in C[0, \infty)$ satisfies the conditions:

$$xg'(x^2) \in C[0,\infty); \quad r(x) < g(0) < g(x), \quad x \in (0,\infty).$$
 (2.2)

If $P \in \omega_{\mathbf{m}}$ is a solution of the programming problem

$$\max_{Q \in \mathbf{P}_n} G(Q') \tag{2.3}$$

subject to

$$||Q|| \le M, \tag{2.4}$$

then $P \in \Omega_{\mathbf{m}}$.

Proof For simplicity write $y_i := x_i(P), i = 0, 1, \dots, m$. Then we have

Claim 1. There exists a vector $\lambda = (\lambda_0, ..., \lambda_m, 1), \lambda \geq 0$, such that

$$\int_{-1}^{1} g'[P'(x)^{2}]P'(x)R'(x)dx - \sum_{i=0}^{m} \lambda_{i}P(y_{i})R(y_{i}) = 0, \quad \forall R \in \mathbf{P}_{n},$$
 (2.5)

$$\lambda_i[P(y_i)^2 - M^2] = 0, \quad i = 0, 1, \dots, m.$$
 (2.6)

To prove this claim we need a basic result, in which

$$abla h(\mathbf{y}) = \left. \left(\frac{\partial h(\mathbf{x})}{\partial x_1}, \cdots, \frac{\partial h(\mathbf{x})}{\partial x_n} \right) \right|_{\mathbf{x} = \mathbf{y}}.$$

Theorem $\mathbf{D}^{[1,\mathrm{Theorem}3.4]}$ Assume that g_0,g_1,\cdots,g_m are continuously differentiable on an open set $S\subset\mathbf{R}^n$. If $\mathbf{y}\in S$ is a solution of the problem to minimize $g_0(\mathbf{x})$ subject to $\mathbf{x}\in S$ and $g_i(\mathbf{x})\leq 0$, $i=1,2,\cdots,m$, then there exists a vector $\lambda=(\lambda_0,\lambda_1,\cdots,\lambda_m)\neq 0,\lambda\geq 0$, such that

$$\sum_{i=0}^m \lambda_i
abla g_i(\mathbf{y}) = 0$$

and

$$\lambda_i g_i(\mathbf{y}) = 0, \quad i = 1, 2, \cdots, m.$$

Let $Q \in \omega_m$ and $Q(x) = \sum_{j=0}^n a_j x^j$. Then (2.4) is equivalent to

$$Q(x_i)^2 \le M^2, \quad i = 0, 1, \dots, m$$
 (2.7)

and P is also a solution of the programming problem (2.3) subject to (2.7) with $Q \in \omega_{\mathbf{m}}$. By Theorem D there exists a nonzero vector $\lambda = (\lambda_0, \dots, \lambda_{m+1}), \lambda \geq 0$, such that (2.6) holds and

$$\left[-\lambda_{m+1}\frac{\partial G(Q')}{\partial a_j} + 2\sum_{i=0}^m \lambda_i Q(x_i)\frac{\partial Q(x_i)}{\partial a_j}\right]\Big|_{Q=P} = 0, \quad j = 0, 1, \dots, n.$$
 (2.8)

It is easy to calculate that

$$\frac{\partial G(Q')}{\partial a_j} = 2j \int_{-1}^1 g'[Q'(x)^2] Q'(x) x^{j-1} \mathrm{d}x.$$

Meanwhile we point out that

$$\frac{\partial Q(x_i)}{\partial a_j} = (x_i)^j. \tag{2.9}$$

In fact, it is trivial for i = 0 and i = m. For $1 \le i \le m - 1$ we see

$$rac{\partial Q(x_i)}{\partial a_j} = (x_i)^j + Q'(x_i) rac{\partial x_i(Q)}{\partial a_j}.$$

Since x_i is an extremal point of Q, there is an index $k \geq 1$ such that

$$Q'(x_i) = \cdots = Q^{(2k-1)}(x_i) = 0, \quad Q^{(2k)}(x_i) \neq 0,$$

and it suffices to show $\left|\frac{\partial x_i(Q)}{\partial a_j}\right| < \infty$. But this fact follows from the equation

$$\frac{\partial Q^{(2k-1)}(x_i)}{\partial a_i} + Q^{(2k)}(x_i) \frac{\partial x_i(Q)}{\partial a_i} = 0,$$

which may be obtained by partially differentiating the relation $Q^{(2k-1)}(x_i) = 0$. This proves (2.9). Then (2.8) becomes

$$-\lambda_{m+1} j \int_{-1}^1 g'[P'(x)^2] P'(x) x^{j-1} \mathrm{d}x + \sum_{i=0}^m \lambda_i P(y_i) (y_i)^j = 0, \quad j = 0, 1, \cdots, n.$$

Let $R(x) = \sum_{j=0}^{n} c_j x^j$. Multiplying the above j-th equation with c_j and summing the resulting equations gives

$$-\lambda_{m+1} \int_{-1}^{1} g'[P'(x)^{2}]P'(x)R'(x)dx + \sum_{i=0}^{m} \lambda_{i}P(y_{i})R(y_{i}) = 0.$$
 (2.10)

In particular, setting R = P yields

$$-\lambda_{m+1} \int_{-1}^{1} g'[P'(x)^{2}]P'(x)^{2} dx + \sum_{i=0}^{m} \lambda_{i} P(y_{i})^{2} = 0.$$

This equation means $\lambda_{m+1} \neq 0$, for otherwise, taking into account (2.6), we conclude $\sum_{i=0}^{m} \lambda_i = 0$, i.e., $\lambda = 0$ (because $\lambda \geq 0$), contradicting $\lambda \neq 0$. So we can suppose without loss of generality that $\lambda_{m+1} = 1$ and hence (2.5) follows from (2.10). This proves Claim 1.

Claim 2. We have

$$\lambda_i > 0, \quad i = 0, 1, \dots, m.$$
 (2.11)

To find a formula for λ_i let $L(x) := (x^2 - 1)P'(x)$ and

$$L_i(x) = \frac{L(x)}{x - y_i}, \quad i = 0, 1, \cdots, m.$$

Substituting $R = L_i$ into (2.5) gives

$$\lambda_i P(y_i) L'(y_i) = \int_{-1}^1 g'[P'(x)^2] P'(x) L'_i(x) dx, \quad i = 0, 1, \dots, m.$$
 (2.12)

It is particularly simple to prove (2.11) for i = 0 and i = m; we do this for i = m. In this case by integration by parts (2.12) gives

$$\lambda_m P(1)L'(1) = \int_{-1}^1 g'[P'(x)^2]P'(x)[P'(x) + (x+1)P''(x)]dx$$

$$= \int_{-1}^1 g'[P'(x)^2]P'(x)^2 dx + \frac{1}{2}\int_{-1}^1 (x+1)dg[P'(x)^2]$$

$$= g[P'(1)^2] - \frac{1}{2}\int_{-1}^1 r[P'(x)^2]dx.$$

By (2.2)

$$\frac{1}{2} \int_{-1}^{1} r[P'(x)^{2}] \mathrm{d}x < g(0) \leq g[P'(1)^{2}].$$

Thus $\lambda_m P(1)L'(1) > 0$ and hence $\lambda_m > 0$.

Now assume $1 \le i \le m-1$. Put $I(d) = [-1, y_i - d] \cup [y_i + d, 1]$ with $0 < d < \min_{0 \le i \le m-1} (y_{i+1} - y_i), \ q(x) := (x^2 - 1)/(x - y_i)$, and

$$\Lambda(d) := \int_{I(d)} g'[P'(x)^2]P'(x)L'_i(x)\mathrm{d}x.$$

Again by partial integration

$$2\Lambda(d) + \int_{I(d)} r[P'(x)^2] q'(x) dx = \int_{I(d)} \left\{ g[P'(x)^2] q'(x) + 2g'[P'(x)^2] P'(x) P''(x) q(x) \right\} dx$$
$$= g[P'(y_i - d)^2] q(y_i - d) - g[P'(y_i + d)^2] q(y_i + d).$$

Thus

$$2\Lambda(d) = \left\{ g[P'(y_i - d)^2] q(y_i - d) - \int_{-1}^{y_i - d} r[P'(x)^2] q'(x) dx \right\} + \left\{ -g[P'(y_i + d)^2] q(y_i + d) - \int_{y_i + d}^{1} r[P'(x)^2] q'(x) dx \right\}$$

$$:= \Lambda_1(d) + \Lambda_2(d). \tag{2.13}$$

To estimate $\Lambda_1(d)$ we break the integral into two parts over $[-1, y_{i-1}]$ and $[y_{i-1}, y_i - d]$. For the first integral with i > 1, noting that $q'(x) = 1 + (1 - y_i^2)/(x - y_i)^2 > 0$ on I(d), by the mean-value theorem for integrals, there is a point $\xi \in [-1, y_{i-1}]$ such that

$$\int_{-1}^{y_{i-1}} r[P'(x)^2] q'(x) dx = r[P'(\xi_1)^2] \int_{-1}^{y_{i-1}} q'(x) dx = r[P'(\xi_1)^2] q(y_{i-1}). \tag{2.14}$$

This formula remains true for i = 1, because in this case each term in (2.14) is zero. Moreover, by (2.2)

$$\int_{y_{i-1}}^{y_i-d} r[P'(x)^2] q'(x) dx < g(0) \int_{y_{i-1}}^{y_i-d} q'(x) dx = g(0) \left[q(y_i-d) - q(y_{i-1}) \right]. \tag{2.15}$$

Then (2.13)–(2.15) by (2.2) leads to

$$egin{array}{lll} \Lambda_1(d) &>& \{g(0)-r[P'(\xi_1)^2]\}q(y_{i-1})+\{g[P'(y_i-d)^2]-g(0)\}q(y_i-d)\ &\geq& \{g(0)-r[P'(\xi_1)^2]\}q(y_{i-1}). \end{array}$$

Similarly we can get

$$\Lambda_2(d) > -\{g(0) - r[P'(\xi_2)^2]\}q(y_{i+1}),$$

where $\xi_2 \in [y_{i+1}, 1]$. Finally by (2.13) and (2.2)

$$\lambda_i P(y_i) L'(y_i) = \lim_{d o 0} \Lambda(d)$$

$$0 \geq rac{1}{2} \left\{ g(0) - r[P'(\xi_1)^2]
ight\} \left[rac{1 - y_{i-1}^2}{y_i - y_{i-1}}
ight] + rac{1}{2} \left\{ g(0) - r[P'(\xi_2)^2]
ight\} \left[rac{1 - y_{i+1}^2}{y_{i+1} - y_i}
ight] > 0.$$

Hence $\lambda_i > 0$. This proves (2.11). So by (2.6) we obtain $P(y_i)^2 = M^2$, $i = 0, 1, \dots, m$, which means $P \in \Omega_{\mathbf{m}}$. \square

Lemma 2 Let g satisfy (2.2). If $P \in \Omega_{\mathbf{m}}$ then

$$G(P') \le G(||P||T_n')$$
 (2.16)

holds and the equality occurs if and only if $P = \pm ||P|| T_n$.

Proof The proof follows the idea of [3]. Note first by (2.2) that the inequality $y \ge z > 0$ implies

$$yg(y^{-2}) - zg(z^{-2}) \le g(0)(y-z).$$
 (2.17)

In fact, by the mean-value theorem for derivatives it follows from (2.2) that

$$yg(y^{-2})-zg(z^{-2})=[xg(x^{-2})]_{x=\xi}'(y-z)=r(\xi^{-2})(y-z)\leq g(0)(y-z).$$

Suppose that $[-1,1] = \bigcup_{i=0}^m I_i$ is the partition of [-1,1] induced by P and the intevals $I = [z_1, z_2]$ and $I^* = [z_1^*, z_2^*]$ are corresponding in the sense of [3]. We need the following

Lemma A^[3,Lemma 2] Suppose that $P \in \Omega_{\mathbf{m}}, y \in (-M, M)$, and $k \in \{0, 1, ..., m\}$. Let ξ and η satisfy the conditions

$$\xi \in I_k^*, \quad MT_n(\xi) = y, \quad \eta \in I_k, \quad P(\eta) = y.$$

Then $|P'(\eta)| \leq |MT'_n(\xi)|$.

Let u(y) and v(y) be the inverse functions of P(x) and $MT_n(x)$ in I and I^* , respectively. Since

$$P'(\eta) = \frac{1}{u'(y)}, \quad MT'_n(\xi) = \frac{1}{v'(y)}, \quad y \in (-M, M), \tag{2.18}$$

-- 678 ---

by Lemma A $|v'(y)| \leq |u'(y)|$ holds for all $y \in (-M, M)$. Then (2.17) leads to

$$\int_{-M}^M |u'(y)| g[u'(y)^{-2}] \mathrm{d}y \leq \int_{-M}^M |v'(y)| g[v'(y)^{-2}] \mathrm{d}y + g(0) \left\{ \int_{-M}^M |u'(y)| \mathrm{d}y - \int_{-M}^M |v'(y)| \mathrm{d}y \right\}.$$

By means of (2.18) the above inequality becomes, noting that both u'(y) and v'(y) do not change sign in (-M, M),

$$\int_{z_1}^{z_2} g[P'(x)^2] \mathrm{d}x \leq \int_{z_1^*}^{z_2^*} g[M^2 T_n'(x)^2] \mathrm{d}x + g(0)\{|z_2 - z_1| - |z_2^* - z_1^*|\}.$$

Summing the above inequalities for $I = I_0, \dots, I_m$ and using (2.2) yields, in which $|I^*| = z_2^* - z_1^*$,

$$G(P') \leq \int_{\bigcup_{i=0}^{m} I_{i}^{*}} g[M^{2}T'_{n}(x)^{2}] dx + g(0) \left\{2 - |\bigcup_{i=0}^{m} I_{i}^{*}|\right\}$$

$$= G(MT'_{n}) + g(0) \left\{2 - |\bigcup_{i=0}^{m} I_{i}^{*}|\right\} - \int_{[-1,1]\setminus\bigcup_{i=0}^{m} I_{i}^{*}} g[M^{2}T'_{n}(x)^{2}] dx$$

$$\leq G(MT'_{n}).$$

The equality occurs if and only if $\bigcup_{i=0}^m I_i^* = [-1,1]$, which according to the definition of I_i^* 's in [3] means $P = \pm MT_n = \pm ||P||T_n$ (because ||P|| = M for $P \in \Omega_{\mathbf{m}}$). \square

3. Proofs

3.1. Proof of Theorem 1

Since $P \in \mathbf{P}_n$ implies that there is an index $m, 1 \leq m \leq n$, such that $P \in \omega_{\mathbf{m}}$, according to Lemmas 1 and 2 to prove Theorem 1 it is enough to verify that the function $g(x) = f(x^{1/2})$ satisfies (2.2). In fact, we have that $xg'(x^2) = \frac{1}{2}f'(x)$, which belongs to $C[0, \infty)$. Meanwhile, by (1.2) we have $r(x) = f(x^{1/2}) - x^{1/2}f'(x^{1/2}) < f(0) < f(x^{1/2})$ for x > 0, which means r(x) < g(0) < g(x). \square

3.2. Proof of Theorem 2

It suffices to verify (1.2). By the mean-value theorem of derivatives for some point $\xi, x > \xi > 0$, we have that $f(x) - f(0) = f'(\xi)x$ and $0 < f'(\xi) < f'(x)$, which means f(x) - xf'(x) < f(0) < f(x). \square

References:

- [1] AVRIEL M. Nonlinear Programming: Analysis and Methods [M]. Prentice-Hall, Inc., 1979.
- [2] BOJANOV B D. An extension of the Markov inequality [J]. J. Approx. Theory, 1982, 35: 181-190.
- [3] BOJANOV B D. Proof of a conjecture of Erdös about the longest polynomial [J]. Proc. Amer. Math. Soc., 1982, 84: 99-103.
- [4] ERDÖS P. An extremum problem concerning trigonometric polynomials [J]. Acta Sci. Math. Szeged, 1939, 9: 113-115.
- ZHOU S P. An extension of the Markov inequality [J]. J. Hangzhou Univ., 1984, 11: 414-419.