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1. Introduction

Grasman W.1 discussed the existence of periodic orbits to a general n-dimension
autonomous system,the result of paper [2] showed that Grasman Theorem contains an
unnecessary condition. Adding small perturbation to the system [1,2], paper [3] got a
similar result. But papers [1-3] all assumed that the singular point is hyperbolic, i.e.,
the real parts of all eigenvalues of Jacobi matrix for system at a singular point are not
zeroes. The purpose of this paper is to investigate the existence of periodic orbits to a
n-dimension autonomous system with a non-hyperbolic singular point.

Consider a n-dimension autonomous dynamic system

¢ = f(z), € R", (1)

where f: M{(C R*) — R", f € C'(M), M is a positively invariant compact set of system

(1).

System (1) define a dynamic flow A: Ry X M — M, (t,zo) — A(t,z),

A(t, A(s,z)) = A(t+ s,z), A(0,2) = =,
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where for any zo € M, A(t,z¢) = z(t) is a solution to system (1) satisfying initial value
condition z(0) = A(0,z0) = 2o, Ry = [0,+0),t,s € R,.
The scalar form of system (1) is

IA

ii = fi(zla e ,In), 1 1 S n. (2)

Define the transformation C : y — 2,y € R" as follows

Ty = yYacosyy, Ty =yYasiny;, z;=y;, I3 <j<n (3)

System (2) is changed into

¥ = gi(y1,¥2, ¥n), 1 <i<n. (4)

Noticing that under the transformation (3),we have

Y1 = (Zacosyy — 2ysinyy)/y2, Y2 = £1cosy; + Eosiny;.

When y, = 0,

i’? cosyy — il Sinyl = f2(0707y3$' te ayn) cos iy — fl(OaOvyIlv' ot ayn)Sinyla

so we assume that f;(0,0,23,---,2,) = 0,7 = 1,2 such that the value of function ¢1(y1,¥2, - -,
at y, = 0 can be defined by means of limit.

For convenience,we introduce the notation M¢ = {y € R"|C(y) € M}, where C is
transformation (3).

2. The Main Result

Theorem 1 Assume that

i) M is a positively invariant compact set of (1) and a star-shaped neighborhood of
P y p g
the origin O.

(ii) O is the unique singular point of system (1) in set M. Let J = f,(0) be Jacobi
matrix of f(z) at ¢ = 0. 0 is an eigenvalue of J with multiplicity 2r, where r is a
nonnegative integer. Fach of the pure imaginary eigenvalues ¢ (8 # 0) of J satisfies:
28 # mb or B # mb, where m is any integer and b = [—4 fi2f21 — (f11 — fzz)z]%/2,fi]’ =
%[zzg,i,j = 1,2. Among the eigenvalues of J with non-zero real parts, there are 2p
eigenvalues with positive real parts, the remaining ones have negative real parts.

(iv) system (1) or (2) can be changed into (4) through transformation (3), where
g; € CY(MC®) and ¢, # 0 on MC.
then there exists at least a nontrivial periodic orbit to system (1) in set M.

In this paper,we use the same numbering way as the theorems of papers [2,3]. The
condition (iii) is omitted in Theorem 1 because we have shown that it is unnecessary in
paper [2].

3. The proof of main result

Proof Defineset I'y = {C(y)ly € M®,y; = ¢ory; = 7+ ¢}. By Lemma 1l [2},Iyisan~1
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dimensional star-shaped neighborhood of the origin 0. By Lemma 3 [2], we can define a
mapping F : Ty — Ty, — A(t(y),z), wherey € {MC|y; = pory; = 7+¢},C(y) = =,
and F € CY(Ty,Ty).

For any z € Ty, set V(z) = F(z)—=z,V is a vector field on I'4. It is clear that V/(0) = 0.
Noticing that V(z*) = 0 &= F(z*) = 2* <= A(t(y*),z*) = «* if * # 0, then the orbit
through z* is a nontrivial periodic orbit to system (1). Therefore the proof of Theorem 1
is completed if we can prove the existence of 2*. Now we come to establish the existence
of z”.

If there exists a * € 0Ty such that V(2*) = 0 , obviously Theorem 1 holds. So we
suppose that for any « € 0T,V (z) # 0, i.e,, 0 ¢ V(0Ty). It is divided into the following
two cases to prove.

(a) V=}0) = {a]a € T4,V(a) = 0} is an infinite set. V(z) = 0 has infinite non-zero
solutions in I'y, hence there exist infinite nontrivial periodic orbits to system (1). Theorem
1 holds.

(b) V~1(0) is a finite set.Since Ty is a star-shaped set and M is a positively invari-
ant set,vector fields V(z) on 9T’y can not point to the outside of I'; along the radial
direction.By Lemma 5 [2],the topological degree of mapping V at origin O on I'y satis-
fies d(V,T4,0) = (—1)""1. It is known from Theorem [4] of index sum of zero points to
topological degree that

d(V,Ty,0)= > iV,a,0) =i(V,0,0) +i(V,2",0) + -, (5)
acV—1(0)

where i(V,a,0) is the index of mapping V at point a.
If we can prove i(V,0,0) = (—1)"~2* (k is a nonnegative integer), substituting it into
(5), we have
(__1)n—1 = (—l)n_2k+i(V)z*’0)+"" (6)

It is clear from (6) that there must exist at least a z* # 0 such that i(V,2*,0) # 0.
Because z* € V~1(0), i.e., V(z*) = 0, Theorem 1 holds. Now we come to prove i(V,0,0) =
(_1)n—2k‘

Since V' ~1(0) is a finite set, 0 is an isolated solution to V(z) = 0. Let U is such a
sufficiently small neighborhood of O that 0 is the unique solution to V(z) = 0 in U. By
the definition of index of zero points, we have

i(V,0,0) = d(V,U,0) = sgn(detV,(0)) = sgn(ﬁ oi),

i=1

where V,(0) is Jacobi matrix of V(z) at = 0, o; is the eigenvalue of V(0). The properties
of o; must be carefully investigated to calculate #(V,0,0).

By paper [2], V;(0) = exp(Jto) — I, where I is the identity matrix. By Lemma 4
[2], to = t(0) = 2* > 0. Hence, exp(uto) — 1 is the eigenvalue of V,(0) with the same
multiplicity as p if u is the eigenvalue of J.

Firstly, the eigenvalue p = 0 corresponds the eigenvalue —1 of V(0) with multiplicity

T

27, hence g = 0 has not any influence on the value of sgn([] ;).
i=1
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Secondly, let & + i3 be the imaginary eigenvalue of J, then
exp[(a = i8)to] — 1 = [e™ cos(Bty) — 1] £ 1™ sin(Bto)

are the eigenvalues of V(0).
When o # 0, |exp[(a + i8)to]| = e*® # 1, exp[(a £ i8)ty] — 1 # 0 are a pair of con-

Jjugate complex eigenvalues of V,(0) with the same multiplicities. Therefore the imaginary
T
eigenvalues of J with non-zero real parts have not any influence on the value of sgn( [] o0;).

=1

When a = 0, exp(+i0)to) — 1 = [cos(Bty) — 1] + isin(Bty). It is known from condition
(ii) of Theorem 1 that exp(£if8to) — 1 # 0 holds for any integer m and are a pair of
conjugate eigenvalue of V,(0) with the same multiplicities. Hence the pure imaginary
eigenvalues of J also have not any influence on the value of sgn( [] o).

i=1

Thirdly, if p is a positive eigenvalue of J, then ezp(uty)—1 is also a positive eigenvalue

of V,(0). Hence the positive eigenvalues of J have not any influence on the value of

sgn( I_Il g;).
Finally, if p is a negative eigenvalue of J then exzp(ut)—1 is also the negative eigenvalue

of V;(0). Therefore, the value of sgn( [] o;) is only determined by the negative eigenvalues
i=1
of V(0). Suppose that matrix J has [ negative eigenvalues in which multiple roots are

numbered according to their multiplicities, then we have i(V,0,0) = sgn( ﬁ o;) = (-1)4

i=1

The relation between the eigenvalues of J and exp(Jt) is referred to paper [5].

Since 0 is an eigenvalue of J with multiplicity 2r and pure imaginary roots occur in
pairs, the number of eigenvalues with zero real parts is even. Among the eigenvalues of
J with non-zero real parts are the 2p roots with posijtive real parts (including positive
roots), and the imaginary eigenvalues occur in conjugate pairs, hence J have n — 2k
negative eigenvalues where k is a nonnegative integer,i.e.,l = n — 2k. In brief, we have
i(V,0,0) = (=1)"2*. The proof of Theorem 1 is completed.

4. A parallel result

Assume fZi-—l(xlaz27 sy 822, 070) L2241y, xn)
“++,25) = 0, where i is a positive integer,1 <1 < [3], |

0, fZi(:cl,zZ, crt L2242, Oa 0) L2141,
] is the maximal integer part of 2.

w3

Define the transformation 5’: y — z,y € R" as follows

Zj =Y; 1<j7<mn, ]#21_17211
Toi_1 = Y2 COSY2i_1, (7)
T; = Yo9; Sinya;_1.

Through transformation (7), system (1) or (2) is changed into
yJ :5‘; (ylayzv"')yn)a 1<j<n, (8)

where 5] is similarly defined with g;.
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Set M¢= {y ¢ R"| %, (y) € M }. After a similar proof with Theorem 1, we obtain

Theorem 2 Assume that system (1) satisfies
(i) condition (i) of Theorem 1;
(11) let b = [_4f2i—1,2if2i,2i-—1 - (f2i-—l,2i—1 - fgiyg,‘)z]%/2, the remaining part is the
same with condition (ii) of Theorem 1;
(iv) system (1) or (2) can be changed into (8) by transformation (7), where
;je CYMC) and 32,‘-175 0 on M€,
then there exists at least a nontrivial periodic orbit to system (1) in set M.

Remark The systematic and perfect results have been obtained on the periodic solutions
to linear autonomous system under the critical condition. In order to apply Theorem 1
or 2 to a linear system, it must have a positively invariant compact set and satisfies the
rotated condition (iv). So the results in this paper are only available to certain kinds
of linear systems,but Theorem 1 or 2 are mainly aimed at the critical case of nonlinear
autonomous system in higher dimensional space.
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