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Abstract: We introduce anti-sheaves for C"-manifolds and a category of anti-sheaves.
The adjoint equivalence between the category of anti-sheaves and the category of C7-
manifolds is established. Using such an equivalence, we obtain a characterization for
deciding whether two given manifolds are C"-diffeomorphic in terms of inherent W.(G)-
sheaves. This provides the first known criterion for determining whether two given man-
ifolds are diffeomorphic.
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1. Introduction

It is known that a fundamental task of differential topology is to find methods for
deciding whether two given manifolds are C7-diffeomorphic to each other ([5] p.16) for
r=0,1,---,00. Kervarie 6] and Smale ! found some compact manifolds with dimensions
> 8 having no differential structure whatsoever. It is known that such a “nonsmoothable”
manifold must have dimension at least 4. In the last decade, Donaldson»'? showed that
there are lots of compact, simply connected, oriented 4-manifolds having no smooth struc-
ture. Gompfl®! showed that there are uncountably many inequivalent differential structures
on R*. The very basic question.on differential topology about deciding whether two given
manifolds are diffeomorphic remains unanswered.

It is not clear that there exists a differential invariant system which can identify the
diffeomorphic C"-manifolds. All the known smooth invariants are good for determining
whether two manifolds are not diffeomorphic. For example, Donaldson invariants and
Seiberg-Witten invariants can not be used to tell whether two smooth 4-manifolds are
diffeomorphic. Using the anti-sheaf and the inherent W.(G)-sheaf introduced in this paper,
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we have at least a characterization for the C7-diffeomorphisms. Thus we obtain a
method for deciding whether two given manifolds are diffeomorphic by the
anti-sheaves. Up to authors’ knowledge, this is the first known criterion for determining
whether two given manifolds are diffeomorphic. Like the differential invariants are hard
to compute, our criterion (Theorem B) is also not easy to verify. Our characterization via
anti-sheaves inherits the diffeomorphic property from the sheaf theory point of view (see
[4.8])-

In this paper, we define a notion of the anti-sheaf (§3) and a category of anti-sheaves
(8§4). By studying the structure of the category of anti-sheaves, we find a necessary and
sufficient condition for two manifolds diffeomorphic to each other in terms of anti-sheaves.
Therefore we provide a method to distinguish the equivalence of C"-manifolds. We have
proved the following theorems.

Theorem A The adjunction (AM,U,n,¢) : AS — C” is an adjoint equivalence, where
AS is the category of all anti-sheaves on R", U is a forgetful functor from AS to C" (see
§5 for n,¢€).

Theorem A shows that the set {¢;¢; '} is a principal part of a C" differential structure
® = {¢;|i € I}. By forgetting some structure of C" (the category of all C" n-manifolds
), we get the category AS of all n-anti-sheaves on R™ and their equivalence. Then the
necessary and sufficient condition on C"-diffeomorphisms is proved in Theorem B. An
application of this theory has been obtained by the second author in [10].

Theorem B Two manifolds (X, ®),(Y,¥) are diffeomorphic to each other, (X,®) ~
(Y, ¥) if and only if there are a (c)-basis Br of X and a (c)-basis By of Y such that

[GF1 f]Bp g [GH1 h]B”a

for a bijective order preserving map m : Bp — Bp. Here (X, ®) and (Y, ¥) are two C”
n-manifolds, [Gr, flB, is an inherent W.(G) sheaf of (X, ®) (see §6).

Notations: Let » > 0 and n > 1 be integers, and let H = {¢ € R™; A(z) > 0} be
an n-half space ([5] p 29). Let U and V be open subsets of H, U =~ V means that U is
CT-diffeomorphic to V', A = B means that A is isomorphic to B in a category. 1y : U — U
is an identity map, — or ¢ denotes an inclusion map. If f : U — V is a C" map and
f71: f(U) — U is also of class C", we write f : U ~» V. A formula

AsBfc=a2D4c,

means that the following diagram is commutative.

A S B
7l |8
D % c.

This paper is organized as follows. In §2, we describe the basic limit property of
differential structures. The definition of an anti-sheaf is given in section 3. §4 is devoted
to construct the category of anti-sheaves. Then we prove Theorem A in §5 and Theorem



B in §6. Some related topics are also discussed in these sections.
2. Limit property of differential structures

Let 67 be the category: (1) Objects: all open subsets of H, (2) Arrows: all C" maps
between two open subsets of H.

Definition 2.1 For a C™ n-manifold (M, ®) with its differential structure ® = {(¢v,U)|U €
Mg}, then Mg is called a (c)-basis of M if V # @ is an nonempty open subset of U
(U € Mg), then'V € Ms.

It is clear that there always exists a (c)-basis for any C” n-manifold. We suppose
that {Ux]A € A} C Mg and U = UpepU,, then U € My. Let J be an index category: If
M\ A, N and Uy = Uy N Upr, then we have A C J and complete A in the following way. For
MXN €A, UyNUy # 0 and there is no [ € A such that U; = Uy N Uy, we set j = AN € J
such that U; = Uy N Uy

Let F € (67)7 be a functor category with objects the functors J — 6}, and morphisms
the natural transformations between two such functors (c.f. (7] p 40) such that

Fyv = FAXY = (U0 Ux),  Fr=F(A) = ¢a(Un),  Fv = F(X);

Flan) = dadinn  F(Bx) = oxdin (2.1)
F(Law) = ig, vy, F() = igwy, FIx) = ig,,0,0)

Then we have the following proposition.
Proposition 2.2 ¢(U) = lim_, F.
Proof Let D : 67 — (87)” be a diagonal functor (see [7] p 67). We define : F — D¢(U)
as follows: Set j = AN for U; = Uy N Uy and 55 = mn = (ﬁé}}, :F(j) — o(U);if A€ A,
m o= ¢y’ F(A) — ¢(U).

Thus n : F = D¢(U) is a natural transformation for nyF(ay) = 7; by (2.1), so
n € Arp(67)7. For each V € obfl,, g: F > DV € Arr(607)7, define h: ¢(U) — V:

For t € ¢(U), h(t) = grdr(o71(t)) if $71(t) € U,.
We check first that h is well-defined: for ¢~ 1(t) € Uy N U/,

ax (o (871(2))) ga (@ (850 (71(1)))) = aan(S5x(671(1)))
= (2 )30 (671(1))) = 9a(8a (877 (1))
h € C",so h € Arrf7,. We are going to show that Dh-n = g. For j = AX and for each
t € dxx(UxnUy) = Fyn, we have
ha(ma(t) = han(dd50(1)
g)\)‘:d),\,\/(q&_l(qﬁqﬁi\l,(t))) (by definition of h)
= gw(t)

Such a map h is unique (see also the proof of Proposition 3.4), so ¢(U) = im_, F ([7] p
67). O
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3. Axioms of Anti-sheaves

Definition 3.1 Let T be a (c)-basis. A C" n anti-presheaf on T is characterized by the
following:

API1. Each U € T is assigned a nonempty set Sy of symbols and a nonempty set Ry
of open subsets of H with the following property. For O € Ry, if an open set 0O =0
then O' € Ry and there is a bijective map ay : Sy — Ry. For p € Sy and ay(p) =
we denote p(U) for O.

AP2. Given U,V € T, if V. C U then for all p'(U) and all p(V') there exists a unique

pp(zl)) :p(V) ~ p'(U) (recall ~ a CT-diffeomorphism) such that

(i) »p (V[})) is a C"-diffeomorphism and p’( - = 1) if and only if p = p'. (ia) If
Uiy C U, then pp,((U'.)) is an inclusion map for p E Sy N Sy,; (ib) if p(Uy) = p(U) then
U1 - U

(i) If W CV C U, then for any p(W),p'(V) and p"(U),

(V) (W) _ p(W)
Py Pov) = Py ) (3.1)
iii) If V C U, then for any p € Sy, there exists a unique q, € Sy such that
i

g,(V) C p(U) and pq’(’( yy’ Is an inclusion map.

Remark The difference between an anti-presheaf and a presheaf is to use the C7-
diffeomorphisms in AP2 instead of restrictions. The “anti” terminology comes from AP2
(ii) by comparing with the usual presheaf definition (c.f. [4] Chapter 0 §3 and §5 and [8]).

Definition 3.2 A C7 n anti-presheaf on T is called a C™ n anti-sheaf if the following
holds. -

AS1. For any open subset O C p(U), there exists a unique open subset U C U and a
unique ¢, € Sy such that q,,(f]) = O and pf,’(’ng)) is an inclusion map.

AS2. IfU,U; € T(i € I) and U = U;e[U;, then p(U) = Uierp(Us). IfU',V C U, then
U'nV # 0 if and only if p(U')y p(V) S p(U'NV).

7 (v) _ »U)

AS3. If U C U then pf;, |p(U) p’,(U)

AS4. IfU,U; € T(i € I) and U = U;e1U;, and for each i € I, p(U;) = p'(U;) and p = p/
for each U;, then p = p’ for U.

Notation The unique g, is always written as p, then g, in AP1 (iii) can be written as p.
Such a C™ n anti-sheaf is denoted by (p,p)T.

Proposition 3.3 Fora C™ n anti-sheaf, if U CV C W, p(U) L p(W) and p(V) L p(W),
then p(U) < p(V).

Proof We have that p)( ) makes sense by AP2 and pp( ) PO p(U by AP2 (ii). So

. ), V) W)Pnv) =
orr cp
(U oV (U (U
2 = Piw)(2) = Ayt (Pl (@) = £ (2):
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We define 5 : F — Dp(U) as follows:

po(Uj) e /
P e
pp(*U)* ifj=AeA

Here F € (6})7, F(j) = po(U;) for U; = Ux N Uy as an element in S(U;),

F(X) = pa(U), F(A’) = pa(Ux), (3.3)
Flen) = A, F(Bx) = o2 (3.4)

y (3.2) and (3.4), it is easy to check that

U U;
mF(e) = ol oy’ = . (3.5)

Son = (n;)jes : F - D(p(U)) is a natural transformation.
Proposition 3.4 IfU,U, € T(A € A) and U = UxgpU,, then for any set {p(Us)|X € A}

p(U) = lim F.
Proof Let V € 0b(6],) be an object and g : F > DV € Arr(07)’. We define a map

hip(U) =V, teo ga(di3)(8)  for t € p(U)). (3.6)
Check that h is well-defined. In fact for any t € p(U), there exists a A € A such that
t € p(Ux) by AS2. Moreover if t € p(Uy) then UxN Uy # 8. So j = AN € J and
t € p(U;). By AS1, we have

D) = a0 (T 1) (ASY)
= 9oy i) (1)) (AP2(ii))
= (A () (€ p(T))
= pF(@)(phi®) (34
= gj(Pf;i?éi)(t)) (Definition of g)
= gA'F(ﬂ,\')(P;U[(Jl’Iz_)(t)) (naturality)
=9 piiif(”éi»(pii-ﬁz;i)(o) (3.4)
= gx(p’ mu (t)) (AP2(i1))
= gxl(pﬁﬁ*{)\,)( t)). (AS1)

Next we need to show that Dh-n=g. For i € J and t € F;, we have

HUA s (Us
m(t) = Al () = phe) () (8)). (3.7)
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Thus 7;(t) € p(U;) for the inclusion p” "(U) Hence

p(U) *

hi(t) = gl(p,)‘(”u’)(n,( ) (3.6)
= (PN (o (1)) (3.7)
= gz( )

Thus we obtain the identity Dh -5 = g. Such a h is unique. If DA’ - = ¢ for &', then by
similar arguments used before, we have

(U) _ (Ux) p(Ux)
hl(t) h/(P;,(Ui)(t)) ==k (pii\U,\; P;)‘ I:\IA)( )

(U (U
Kma(eis 0y (8) = 9a(pTs )1 (8)) = h(2).

Il

The result follows. O

Remark The property lim_, F' = p(U) corresponds to the axioms (M) and (G) in Propo-
sition 1.7 of [8] §2.1.

4. Category of anti-sheaves

4.1. Quasi-morphism and morphism Let (F, p)r and (G, 7)w be C™ n anti-sheaves.
We set the following axioms.

QM1. There exists B, = {U;}icr (a (¢)-sub-basis of T'), and W' = {V,},ex a subset
of W such that for each U; € B, there exists a corresponding open set V; € W' such that
if V; C V; C W/, then there exist

<O L By 7 e o
agio)  F(U:) = G(Vi) € €7,

for all F(U;) and G( ,) Denote by I';y = {agig'))lU, € B,}.
QM2. If Im(«a U))) C G(V/) and V; C V/, then there exists

oGl P(U) - G(V) e ¢,

for all F(U;) and G(VY). Denote by I'y = {all agEIU,:,)) and all their restrictions nggj,))lF(UiI)}.
Let a =Ty UT,.

QM3. If U;,U; € By and U;NU; # 0, then V;N'V; # 0 is an open subset corresponding
to U; N U; and the following diagram is commutative.

aF(l',-nt)
FU;nu) “EY ewinyg)
pl 7 (4.1)
)
Py S e
R 6 PR
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Definition 4.1 If the axioms QMI1, QM2, and QM3 hold for (F,p)r and (G,T)w, then
a: (F,p)r- - — (G,7)w Is called a C" quasi-morphism on B,,.

Notation Note that each open set corresponding to U; € B, in QM1 is denoted by a
letter with its index %, it is not unique in general.

Definition 4.2 Let o and 8 be quasi-morphisms. If we have

a = {agyli € I} C B = {85y ]s € B}, (4.2)

then a is called a reduction of 3.
We define a binary relation R in the set of all quasi-morphisms from an anti-sheaf to
another one as follows:

(a,B) € R if and only if @ and 8 have their common reduction. (4.3)

Proposition 4.3 Two reductions of a quasi-morphism have a common reduction.

Proof Let {C‘G(v |i € I} and § = {ﬁG Is € ¥} be two reductions of y = {7F(U“ lw €

W} Set A = {U NU\U; n U, # 0}. Then A is a (c) sub-basis of T. We deﬁne a
quasi-morphism § on A as follows:
Since U; NU, = Uy C U; andU NU, = Uy CUs,thereemstV"CV'andV‘ CV

such that ag%') and 'BG(V' make sense by QM3. Such V3, V, are called admaissible.

I

So 'yG ,) and 7G( “') are also well-defined. Since U, N Uy # 0, thus VI NVE # 0 and
F(UrﬂU‘./)

7G(V,-70V;}) is well-defined by QM3. Denote V;; by Vi* and V7 by V. Define
§ = {62&2%’)) = 75((3‘,?{,’,-))[&; NU, € A and for all admissible V;* and V}. (4.4)

Lemma 4.4 6 Canp.

Proof By QM3,

G(V V] F(U;aU,) _  F(UinU,)
tavyy  Towpavy T ey
F(UnU,) _ F(U)
Te(vy) Xevyy
F(U;) . F(U, s ~ 178 G(VSnVE) F(U))
A vienvy) 1 well-defined for Im(aG(V ) € G(VNV}) by QM2. Since ZGEV 5 oGy =

aGEV/)), s0 75((3';2[‘],’;)) = agggf,r:{,’i)) and therefore § C a. Similarly, § C 8. O

Lemma 4.5 § is a quasi-morphism on A.

Proof It is easy to see that QM1 holds for 4.
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QM2: If Im(85(yn)) € G(Vo) € G(V N V5), we have

G(VnVi)
Seivoavi) = Atvonvi) = Bevinvi) (45)
so that ag/'""") and Bl exist. Let U;N U, = Uy = Uy, ie. Vo = V&' = V. Then
agE‘U/g;nU,) _ (F W) _ 7F(U,»/IﬂU,'/I) _ §FOanU) o (4.6)

cwyavy)y ~ Tewgavi) T ‘e avy)

QMS3: If (U;, nU,, )N (Ui, NU,,) # 9, and v satisfies QM3, we have the following commu-
tative diagram.
F(Ui NU)N (U0 U,)) ™ GV n Vi (Vi n Vi)
pl \ Lr
R0 (1 V) = GV V).

F(U; nU,, )n(Ui, UL, ))

Since V' N V.* and V* N V2 are admissible, we have =4 : 3
1y 12 3y 32 ’ 71,2 G(‘/'.:l n‘/_:ll )n(‘/':gnv.:;))

QM3 holds for §. Now the § is a quasi-morphism on A. O
The proposition follows from Lemma 4.4 and Lemma 4.5. O

Corollary 4.6 The relation R (4.3) is an equivalence relation.
Proof It follows from Proposition 4.3. O

Definition 4.7 An equivalence class of a quasi-morphism is called a morphism. Set
(O‘G%;) (F,p)r — (G, T)w for the equivalence class of a (still denoted by a).

4.2. A composition of two morphisms Given two morphisms a and j3:

o = (agy))  (Fp)p. = (G.7)B,. B = (Bgus)): (Gor)m, — (H,0),

for acgv') we have V; = U,(V;NV,). By AS2, G(Vi) = U,G(V;NV,) and p: G(V; NV,) —
G(V;) is the inclusion map. By QMS3, there exists an open set W,; C W, such that
,BH(V iV2) s well-defined. Since (aFEV‘)) YG(V; NV,)) C F(U;) is open, there exists an

open set U C U; and (agy))"H(G(Vi N V4)) = F(U7) < F(U;) by ASL. Thus by QM3

we have an open set V;* C V; such that the following diagram is commutative.
F(U7) = G(Vi') = G(V) = F(U?) = F(U;) % G(Vi).
Thus Im(aggg',;) C aG v (F(U")) C G(V;nV,), and by AS2

Gy € GV NGVin Vi) C GV N (Vin V). (4.7)

Hence acgvz) A(ViV,)) is well-defined by QM2, so is aggg rzv ) The composition ﬁH
is well-defined. We obtain a set ¥; = {ﬂH VﬁV) g

(vinv,) F(U?)
w,) YGvin

VmV | all ¢ and all s} . If U C U is
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open, then by QM3 there exists aggg; with V CV,nV, CV, so that ﬂf{}w) is well-defined

for W C W,. Hence the composition ﬁH F&U/g is well-defined. Let

={z = ﬁg(‘va) AGw) I YU C U? is nonempty open subset for all 4, s, (4.8)
and V,W such that z is well-defined},
then £; C X # 0.
Lemma 4.8 ¥ : (F,p)--- — (H,0o) is a quasi-morphism.

Proof Let m be {U?| for all 7,s}. In fact, we have that

F(U3) = (oG MG (W) = Us(agy ) THGVi N VL)) = U P(UF),  (4.9)

and U,U? C U;. Since both p??{'f:)U,-") and piigfl)j,) are inclusion maps by AS1,

F(U;) = U,F(U}) C F(U,U?) C F(Uy), (4.10)

So we have F(U,U?) = F(U;) by (4.9) and (4.10), hence p?t;:)U') = 1p;). We obtain

U,U? = U; by AS2 (i) (b). Therefore 7 is a sub-basis. Let T" = {U|Q # U C U} is open,
Uf € 7}, then T' is a (c)-basis.

It is easy to show that QM1 and QM2 hold for £. Now we observe that 7' C B,

and V € Bg if ﬂg((w)aggg; € ¥, so X satisfies QM3 because both a and f satisfy QM3.

Therefore ¥ : (F,p)--- — (H,0o) is a quasi-morphism on 7. O

Lemma 4.9 The equivalence class of ¥ (the morphism ¥) is independent of selections of
representatives of a and .

Proof Suppose that « £ &' and Jé] R B.IfyCana and § C NG, then
G(V) FU G(V)y FU G(V U GV F U
(5w 16v)} € Brmacn) 0 8 T a6 0 Biima'aint 0 {8 5 e s
so Ba,B'a,Ba’ and f'a’ have their common reductions. 0O
Definition 4.10 The morphism ¥ is called the composition of a and §.

4.3. A category AS

Proposition 4.11 There is a category AS of all anti-sheaves:
Objects: all anti-sheaves;
Arrows: all morphisms in the Definition 4.7;
Composition: the compositions in the Definition 4.10.

Proof It amounts to verify the associativity and unit law. Clearly 1(r, = (1p)) the
Unit Law holds.
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Associativity. Given a configuration (F,p) = (G, ) LA (H,0) 5 (A,8), we have
Ba = {ﬂg(( G(V ]V openset U C U, U € {Uf}i.},

18 = {721((‘)” ﬁH W)lv open set V C V/,V} e {V}},.},

¥(Ba) = {7.4(()) (ﬂH(W)aG(V))‘v open set U C U!,},
H(W) ,G(V U 3,

(1B)e = {(7A((()))ﬁH((I/V)))aGEV§|v open set U C U; '},

where U; = U, U = U,,.tU:'t = U,,,tU,{x. Let U; ¢ = Ui‘”t N Uit,.s if it is not empty. Then
Ui = UgtUj 44, s0
B={UIB#£UCU,C Ui st € {Ui.s,t}i,.&t}’ (4-11)

is a (c)-basis. For each U € B, wehave U C U N U, . IfV C V" and V; C V{,, then

ot F(U!
agég; and a (I(J& ) are well-defined by QM3 since aiii’,‘,; and aG(("/‘;‘))

VNV, # 0 and there exist acﬁgzﬂ, nd ag, (lan) Let \ = {7,4 o ﬂH VDVI)O‘S%LV,)}’
then

are well-defined. So

A Cy(Ba)n (vB)a, ' (4.12)

Thus y(fa) R (vB8)a by (4.12) (or (y(Ba),(78)a) € R) because A is a quasi-morphism.
The result follows. O

From the above discussion, it is clear that we have the following.

Proposition 4.12 If both B’ and B are (¢)-bases of T such that B’ C B, then we have

(F.p)p' C(F,p)p and (F,p)g = (F,p)p in AS.

5. Adjoint equivalence

5.1. A binary relation Given a C" n-manifold (M, ®) with a (c)-basis B. To each
U € B we assign a set Sy = {¢|V(¢,U) € &} and a set Ry = {#(U)|¢ € Sy}. Let
ay : Sy — Ry;¢ — ¢(U). When V C U, we put pd) V) _ =@(¢')7, ie. pﬁ;(g)) is a symbol
with its value ¢(¢’)~1. Then we get a C™ n anti- sheaf (®,0)B-
Definition 5.1 U : (" — AS be a forgetful functor: U(M,®) = (®,p)p for (M,®) ¢
0bC"; U f = {all C" local representations of f} for f: (M,®) — (N,¥) € ArrC".

Clearly, Uf is a morphism from U(M, ®) to U(N,¥) in AS. Sometimes we write
Uf = {¢vfo5'} for short.

Given an anti-sheaf (F,p)r, set X = {(F(U),z)VF(U) € (F,p)r,Vz € F(U)}. We
define a binary relation R in the set X as follows:

(F(U),z),(F'(V),9)) € R ifandonly if UNV # 0 and ppi( ) )z = y.
Lemma 5.2 ((F(U),z),(F'(U'),y) € R ifand only ify = p?,((l{jnnUU’,)):c andz = pg.;(UUnng;)y.

— 10 —
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FUAU’) FIUAU") F(UNU") F(UnU’

Proof (=:)y = PRy T = PRy PEquaun® = PRiunu)® Sincey € F/(UNU"), w

F(UNUY)  FYUAU') FUAUY)
get ppauny Y = Prnuy Priunun® = 2
FUNU') _ _ F'UAU') FUAU') _ FUNU')
(=) y= Priunun® = Pryuny  Priunun® = PRy T

Proposition 5.3 The relation R is an equivalence relation.
Proof (1) If ((F(U),z),(F'(V),y)) € R, by Lemma 5.2,

F/(UNV) _ FUNV) F'(UNV) FH{UAV)

L=PrwavyY = Pruuy Prunvy ¥ = Pru)

Thus ((F'(V),y), (F(U),z)) € R.

(2) If ((F(U),z),(F'(V),y)) € R, and ((F'(V),y),(F"(W),z)) € R, by Lemma 5.2

and the axioms AS1 and AS2, y ¢ F(UNV)NF (VW)= F(UnVnW), thus

F/(VAW)  F(UNVNW) FUAVAW)

2= Ppoyvew)¥ = Proveow) Y = Prounvaw)¥-

Since we have

N Fi(UnV)  F(UNV) F(UNVnW)
z Priwnvy ¥ = Prwnvy Priuny)
FIUAVAW) FUAVAW) F'(UNVOW)

F(UNVNW)
= Prwnvew) ¥

thus z € F(UNV NW). By Lemma 5.2,

FUAVAW)
Priunvow)® = U

Therefore

FUNVNW)
Prounvaw)y (5.1)

F{UnVnW) FUNVnW)
Prowavow)Priunvaw)?® (5.2)
FUNVAW) ..

= pFu(UﬂW) T (AP2(11))
FUnWw)

= Prruow)®s

we obtained that ((F(U),z),(F"(W),z)) € R. O
The equivalence class of (F(U),z) is denoted by (F(U), z).

Lemma 5.4 (F(U),z) = (F(U),z') if and only ifz = 2'.
Lemma 5.5 {(F(U),z)|Ve € F(U)} = {{F'(U),y)|Vy € F'(U)}.

Proof Let y = pF,( ) 2. Then (F(U),z) g (F'(U),y), and

{(F(U),z)|ve € F(U)} C {{(F'(U),y)|Vy € F'(U)}.

— 11 —
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Let z = pﬁl((UU))y, then the proof is complete. O
Lemma 5.6 {(F/(V),z)|Ve € F'(V)} C {{F(U),z)|Vz € F(U)}ifandonlyifQ #V C U.

Proof (=:) For each z € F/(V), (F'(V),z) L (F(U),yz) and y, = pF((g V)2, we have

z € FI(VNU)and F/(V) = F'(UNV). By AP2 (i), pﬁ,ﬁ“ig“’) =1land UNV =V, so
vV CU.
(«:) Since z = pF ):c for z € F(V), we have (F(V),z) z (F(U),z). So

{{F(V),2)lVz € F(V)} C {(F(U).z)|¥z € F(U)}.

Therefore the result follows from Lemma 5.5. O

Lemma 5.7 IfQ # Uy C U, then (F(U),z) = (F(U1),z) for z € F(Uy).

Proof For z = p?%')):c, the result follows. O

Lemma 5.8 IfUNU' # 0, then
(F(0),2)| V= € FO}NTE U, )l Yy € F(U')} = {{FU AT, 2)| Yo € F(UNT")}.
Proof By Lemma 5.6 and Lemma 5.7, we have
((FO),2)| Ve € F(UNU")} = (FUAD),a)| Yz € F(UNT")}
C {(F(U),2)| V= € F(U)}n{{F'(U"),y)| Vy € F'(U")}.

Let (F(U),z0) = (F'(U"),y0) € {(F(U),z)| Yz € F(U)} n{(F'(U'),z)| Ve € F(U")}.
Thus z¢ € F(UNU') and (F(U),z0) € {(F(U),z)| Ve e F(UNU')}. O

5.2. A C" anti-sheaf manifold

Definition 5.9 X = {(F(U),z)| Ve € F(U),YU € T,YF(U) € (F,p)T},
B = {{{F(U),2)| Yz € F(U)}| YU € T,¥F(U) € (F,p)T}.

Then B is a basis of X by Lemma 5.8. Let T be the topology generated by B. We have a
topological space (X, ).

Given a map ¢p ) : {{(F(U),z)| Ve € F(U)} - F(U) ((F(U),z) — z). By Lemma
5.4, ¢p(y) makes sense. By AS1 and Lemma 5.7, ¢ry) is a bijective continuous open
map. Therefore (¢p ), {(F(U),z)| Yo € F(U)}) is a chart.

If G = {{F(U),z)| Ve € F(U)}n{(F(U1),y)| Yy € Fi(V1)} # 0, then by Lemma
58,G = {{F(UNU),z)| V2 € FUNUL)} = {(FRUNU),y)| Yye A(UNU)} We
get

¢F1(U1)¢HU)|F(UnU,)(73) = ¢pwy((F(UNTU),2))

= érw)(F(UNT), PFf(tPnUB)””

= ¢F|(Ul ((Fl(Ul) pFl(UUﬂUl)m»

F(UNUY)
= Prwy %

— 12 —
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therefore the atlas {(¢r (), A(F(U),2)| Ve € F(U)})| VF(U) € (F,p)r} defines a C™ n-

manifold (X, ®) which is called a C" anti-sheaf manifold and is denoted by AM((F, p)r).

Also B = {{(F(U),z)| Va € F(U)}| VF(U) € (F,p)r}is a (c)-basis of UAM((F, p)T).

Definition 5.10 In AS, a morphism 7 : (F,p)r — UAM({F, p)r) is defined as follows:

Given an openset U € T, let {(F(U),z)| Yo € F(U)} be a corresponding open set; ng((UV)) :

F(U) — Fi(V) be the map pg ), it {{F(U),2)| Ve € F(U)} C {{F(V),z)| V= € F(V)}.
For U C V the definition of 7 is well-defined by Lemma 5.6. We also have

mrUy _ FU) _ _ F(U) FU) __ _F({U)
77F|( = PrnT = PR (PR )T = TR )T

Let n = {all n;‘l((UU))}. It is easy to check that 7 is a morphism on T'.

Definition 5.11 A morphism © on B is defined as the following:
= {all 05} : UAM((F, p)1) — (F, p)r,

for UCVeT, o) =pp ).

It is easy to prove that ©® is a morphism on B and that On = LiF ), and 70 =
luam((F,p)r)- Therefore we obtain

UAM((F,p)r) = (F,p)r  in AS. (5.3)

Definition 5.12 Given a C" n-manifold (Y, ¥) € ObC" and a morphism a : {F, p)r
U(Y,¥) on By, we defined a map h: AM((F,p)r) — (Y, ¥),

(F(U),z) — ¥y a svn® forU € By (5.4)
Lemma 5.13 The map h is well-defined and a C™ map.

Proof For each a € X there exists an open set W € T such that a = (F(W),z). Since
By is a (c) sub-basis of T', we have F(W) = U;c1F(U;) for U; € B;. Hence 2y € F(U,,)
for some iy € I. We obtain that a = (F(U,,), o) by Lemma 5.7.

‘Given Uy, U € By with (Fy(U1),y) = (F(U),z), then z € F(U N U;). Set U(Y,¥) =
(¥,7). By QM3 we have the following commutative diagram.

SFLunuy)
FUnm) MUY ywvan)
FUAU. -
Pm((Ur:)l) ! Lrm =9yt (5.5)
F;(Ul)
Fl(Ul) U’_()vl) ¢/(V1).
FUNU, AW
Hence rlad‘((vm,l)):c = u,l(vl))y by (5.5). So
1 Fi( -1 _F(UnU;)
(¥')” d,‘ y =P lay an‘) =4 lad " V) . (5.6)
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The well-definedness of h follows from (5.6). Note that ¢p)((F(U),z)) = 2 and

-1 F(U FU
wvhfﬁF(U)-l:c = ¢V(¢ lad,i,(‘)/)z) = 1/,( () L
so h is, in fact, a C" map. O

5.3. Adjunction

Note that Uh = {«a 1/) |\7’a a (7 local representation of h} and the morphism
F(U‘),)n?((g)) = ad,( We have the followmg identity:
Dh-n=aq,

where D is the diagonal functor. If hy : AM((F,p)r) — (Y, ¥) with Uhy - 5 = a, then
- FI(U') Ly PO
(¢V,h1¢F,1(U,))(77F,(U,):C) = X (vnTs

so we obtain
m((F/(T7),2)) = vty ()2 = ((F(U7), 2)).

Therefore hy = h. The morphism 7 is a universal arrow from (F, p)r to U,

Proposition 5.14 There exists an adjunction
(AM,U,n,¢) : AS — C".
Proof The result follows from the above and Theorem 2 (ii) in [7] page 81. O

Theorem 5.15 For an adjunction (F,G,n,¢) : X — A:
(i) F is faithful if and only if every component 7, of the unit 7 is monic
(i) F is full if and only if every n, is a split epi.
Hence F is full and faithful if and only if each 7, is an isomorphism z & GFz (see
Theorem 1 in [7] p88).
By methods in [7] §IV 3, we can complete the proof by showing the following lemmas.

’

Lemma 5.16 Let f. = (f.)ccona @ A(—,a) — A(—,b) be the natural transformation
induced by an arrow f :a — b of A. Then for each ¢ € ObA, f.. is monic if and only if f
is monic; f.. is epi if and only if f is a split epi, i.e. if and only if f has a right inverse.

Lemma 5.17 If(T,G,n,¢) : C — A is an adjunction and if (T',G,n',¢’) : C — A is an
adjoint equivalence, then (T,G,n,¢) : C — A is also an adjoint equivalence.

Proof By [7] p 91, we know that (T',G,7',¢') : C — A is an adjoint equivalence, so is
the adjunction (G,T",(¢')~%,(7')") : A — C. Hence both T” and G are full and faithful
by Theorem 1 (iii) in [7] p 91. Since the functors 7' and T are naturally isomorphic by
Corollary 1 [7] p 83, the functor T is also full and faithful. Therefore both 7 and ¢ are

natural isomorphisms by Theorem 1 [7] p88 and Theorem 5.15. The proof is complete.
0
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Theorem A The adjunction (AM,U,n,e) : AS — C" is an adjoint equivalence.

Proof (1) U is faithful. Given two C™ maps f,g: (X,®) — (Y, ¥) with Uf = Uyg. Let
h:U(X,®) - U(Y, ¥) be their common reduction. Now we have

Ug = {¢vgép'} and Uf = {g4 f(¢p) "} (5.7)
Let By, = {U;|7 € I} be a basis of h. So
h={$v.foy'} = {bvigey!}, (5.8)

and 1/’V.-f¢[_1,.1 = ¢V,-g¢ﬁ,.1- If z € U;, then (¢Wf¢(_],.1)(¢U,~(z)) = Yy, f(z) = ¢Yv.g(z). Hence
f(z) =g(z),s0 f =g.

(2) U is full. Given a morphism a = {a;jl)'v V) U € B,} : U(X,%) — U(Y,¥). For
each 2 € X, there exists an open set U € B, such that 2 € U. Let r : X — Y be a
map such that 2 — ¥y (a 17"'(3)(¢U( )(z))) for ¢ € U. The map r is well-defined. If
z € U1 NU,U, Ui € B, using the definition of U and Axiom QM3, we get the following

commutative diagram:

d’l(”':"‘lél)
du(z) € qu(UnTy) 2 gUnwy) "S™ y(van)
1 P2/ 1 | l N

*’n(”u

$u(U) b)Y uw) (5.9)
Il N\ O1

Q?U((—J’)
ou(U) A - Py(V).

where o1 = Yy |y, (v /1 = 6165 g wern) and p2 = udr g, waoy)- For ¢ €
Unuy,

oG ea(pa(du(2)) =l gu(z)
= el (T (o (%(m))) (5.9)
= (Yv s g VﬂVl)Oﬂ/, (¢1( ).

Hence we obtain that
i (o u(2)) = 9 (@ U (41(2)). (5.10)

So r is well-defined by (5.10). We also have (v ré;!) (o (z)) = 3:(‘/7(‘/)(¢U( z)), so Yyroy
is C" map. Clearly Ur = a, so U is full.

(3) We have already proved that for any (F, p)r € AS there exists a manifold AM((F,p)r)
ObC™ such that 5 : (F,p)r = UAM((F,p)7) in AS. By Theorem 1 [7] p91 there exists
a functor L : AS — C7 such that (L,U,%’,¢’) : AS — C is an adjoint equivalence. The
result follows from Proposition 5.14 and Lemma 5.17. O
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Corollary 5.18 Every C”-manifold is C"-diffeomorphic to its anti-sheaf manifold.
Corollary 5.19 If(X,®) and (Y, ¥) are two C"-manifolds, then
(X,®)~ (Y,¥) ifandonlyif U(X,®)=U(Y,¥).

Proof If U(X,®) = U(Y,¥) then AMU(X,®) ~ AMU(Y,¥). Corollary 5.18 shows
that (X,®) ~ (Y, ¥). O

Remarks 1. Theorem A shows that the set {¢;¢:'} is the principal part of a C”
differential structure.

2. There are manifolds without smooth structures on AM((F,p)r) (see [1,2,9]), i.e.,
there are (c)-bases without a C™ anti-sheaf structure (r > 1) by Corollary 5.18.

6. A characterization of C"-diffeomorphisms
Definition 6.1 A semi-group G is called a weak group if the followings hold:

1. G = [1;¢; Gi is a disjoint union of all G;, where G; is a semi-group with its left unit
l;.

2. G = [l;es Hj is a disjoint union of all H;, where H; is a semi-group with its right
unit r;.

3. For each g; € G;, there exists h; € H; such that hjg; = r; and g;h; = I; for some
jeJ.

Given a C" n-manifold (X, ®) with ® = {¢y(U)|U € B}. Let (®,p)p = (X <I>) To
¢(U) pe(U) ¢(U) P¢ W HU c
pr (U P () Pyt () Py 1Y Pain( )

(®,p)B;Vp,$,p'¢’ locally homeomorphism}. A map p : U — R” is called a ¢ locally

homeomorphism if it is a locally homeomorphism and for some (,‘b € ®,p(U) = ¢(U). The

symbol p ; (((}) is new with its value p(i and the symbol p with its value pz((U)).
The set G,(U) can be formed into a semi-group with an assocxatlve binary composition

o such that

each open set U € B we assign a set G,(U) = {p

C0:G(UYx G(U) - G- (U)
$'(U) ¢"(U) #"(U) #u)  PslU) rsU)
(o) Py 1 Pawy Py /’¢>"( ) Py
Then we have a weak group G.(U) = [ly, GY vy, Gp = 1w, HY v, H}i, where
GY = {p Po U)|V¢’} is a semi-group with its left unit p‘i)(U) and G}’ = {pf((%))l\/qﬁ'} with its

left unit p EU; Hd> = {pd)(U) |V¢'} with its right unit pd»tU)

For U' C U € B (U’ # U), there exists a homomorphism
U . .U U’ v ¢
for: GH(U) = G(U') : P¢(( )) = piE(U)’)’pﬁl(} U) Pyj)d,U“)r,) (6.1)

Since fU,‘ fgl = fg, and let fg = idg, (), we get a presheaf [Gy, f]p of the weak group
on B. We show that the presheaf (G, f]p satisfies the condition (M) and weak (G) (see
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(8] p 14 and Definition 6.6).
Lemma 6.2 The presheaf [Gy, f|p satisfies the condition (M).

Proof Suppose that U = U;cpU; for U,U; € B, and s,s' € G,(U) such that fZs =
U;

U o g _ #(U) . Pe(U) " $(U:)
f[,JisU, Viec A Let s = pp'd,/(U) and s’ = P by the definition of G,(U). Thus pp;,(U.') and
p%?(U-),) are the same symbol, so s = s’. O

Let U = UaepaUx with U and Uy € B. Given a family (s))aea with VA € A, 55 € G,(U))

and VA, i € A, UsnU,, # @ such that £ (s3) = fiPyr, (5), YA, € A. Let s, = pgiggi}
bu(Up)

and S = p(f);‘(Uﬂ)a then ¢/\IU,\F1U,, = ¢;LIU,\OU,,- :

For the set {¢,w,)|A € A}, we define a map h : U — R™ such that for all z € U,
z — ¢x(z) if = also lies in U,. It is well-defined due to Saluyav, = $ulv,nv, . Since
hlu, = éx : Ux — ¢2(Uy), we have that h(U) = Uxea®a(Ux) is an open set of H, so
h(U) € Ob8},. Note that h is a local diffeomorphism, not necessary a local coordinate.

Let T € (6)7 (like the functor F in Proposition 2.2) and ¢y, = dalu,nu,. We
have 7, : ¢5(Ux) — h(U) is defined by ny(2) = h(¢;'(z)). Then ny(z) = z. Let
M P (Ux N U,) — h(U) be the map z + qS,\IUmU“(qS;;(z)).

Proposition 6.3 7 = (nx)aca : T — DA(U), is a natural transformation.
Proof Let i(t) = (qS,\[UmU”,¢;’f)(t) for t € ¢»,(UxNU,). We have
Nu(u83: (1)) = M@0ty loarw, (6(1))) = budy  vaew, (i(t))
= i(t) = mu(t).
Similarly we obtain that 77,\(¢,\¢;j(i(t))) = m.(t). So 7 is a natural transformation. O

Definition 6.4 Given an open set V € Obf7, and a natural transformation 9 =(9x)ren :
T — DV with gy € C”, we define a map m : h(U) — V such that z — gxa(z) for
z € ¢x(U»).

Lemma 6.5 The map m is well-defined and a C"™ map.

Proof Suppose that z € ¢,(U,) and UxNU,, # 0. Note that g is a natural transformation.
The following diagram is commutative:

¢/\;L(UA N Uu) ‘
! ¢,\¢;ﬁ N I
éx(U») A v

Hence g,,(z) = gx(2), similarly g,,(z) = g,.(z). Therefore the map m makes sense and it
is clear that m is a C" map. O

Since m(na(z)) = ga(m(z)) = g(2), we get

Dm-n=g. (6.2)
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Ifm' : h(U) — V € C satisfies Dm’-n = g, then m/(z) = m'(nx(2)) = ga(z), V& € ¢a(Un),
so m = m'. Therefore we obtain the limit property

LimT = h(U). (6.3)

By Proposition 2.2 there exists a chart (U,¢) € & such that h(U) = ¢(U). A similar
discussion for the set {¢>,\(U)\)|A € A} shows that there exists a map h’' : U — R" such
that h'(U) = ¢'(U) for some chart (U,¢') € ® and h'|y, = ¢).

Deﬁmtlon 6.6 Lets = ph‘”(( ) Thens € G, (U),

hU) h(Ux) ¢(U) _ U
| (Phiie) = Priiony) = (P = Pyron) = f0,
by (6.1) and fU (s) = sx. Such a presheaf is called a W.(G)-sheaf. I.e. A presheaf satisfies
condition (M) and weak (G’) B

Remark ' The fU in Definition 6.6 is defined sumlarly as (6.1) by using h(U) instead of
P(U). Since h(U) = $(U), so the s satisfies ff (s) = sx. But h # ¢ in general. Soitisa
weak condition (G). The sheafification of the presheaf [Gy, f]p (c.f. [4]) is not the object
for our purpose.

Proposition 6.7 The presheaf |Gy, f] is a W.(G)-sheaf.

Definition 6.8 [Gy, f]p is called an inherent W.(G)-sheaf of the manifold (X, ®) or of the
anti-sheaf (&, p)p. Given two W.(G)-sheaves [Gr, f]p and [Gy,g]p, we have the following
definition. If there is a bijective map m : B — D preserving intersections such that for
each U € B, Gp(U) = Gu(m(U)), i.e,, they possess the same elements and the same
binary composition, then [Gr, f]p is called to be equal to [Gy,g]p under m. We denote
by [Gr, flg = [GH, 9D '

Given two manifolds (X,®) and (Y, ¥) such that (X,®) = (Y, ¥). Let U(X,®) =
(F,p)B, and U(Y,¥) = <H,T>BH. Thus (F,p)p, = (H,7)p, in AS. We shall show
that there exist two bases By C BF' and Q C By, and a bijective order preserving map
m : Bf — Q such that [GF, f]Bu = [Gu, hlg, where [GF, f]py. is the inherent W.(G)-sheaf
of the anti-sheaf (F, p)Bu and [GH, h]g is the one of the anti- “sheaf (H,T)g.

Theorem 6.9 The inherent W.(G)-sheaf is a differential invariant.

Proof Given two morphisms (F,p)g, = (H,T)s,, LA (F,p)By, with Ba = L(p ), and
af =1 (Hm) sy . Since 1<Fp = {1F |VU S BF,VF(U) <F;P>Bp} and Ba = 1(F~/J>Bp

the quasi-morphisms {ﬂF W) H IVU € Br} and {1p|VU € Br} have a common

reduction. So there exists a (¢ )-basw B C Bp with L = {ﬂF((g))af{((g)) = 1p@)|VU € BR}.

Hence we get a set

A= {VIVU € Bp,YBpw)e Z‘W € L}. (6.4)
Similarly we have a (c¢)-basis By C By, a set '
Hy(V
$ = {ag B = L ¥V’ € By, (6.5)
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and a set D = {U'|VV' € By,Va V' ﬂH’(g,,; € S}. Foreach V € Aand V =
Uyreg (V N V'), we have H(V) = UVIEB}{ (VnV’) by AS2. By QM1 and AS1, we
have (aH(U)) YWH(V NnV') = F(U') for a unique open set U’ C U. Then we get
aset E = {U'VU € Bp,WV' € By, (ag()) {(H(V NV') = F(U')}. Let B =
{U|for all nonempty open set U C U’ VU’ € E}. Since B} is a (c):basis, it is easy .to see
that E = Bf. Denote By = {U'|VV' € By, (ag )" (H(V V")) = F(U")}. We have
FU) -
Uures, U’ C U and Upep, F(U') = Uyreg; () "V 0 V) = (ag ) (HV)) =
F(U) Thus F(U) = UU’EEuF(U) = F(UyteEUUI). So U = LJyleEUU' by AP2 (l)

b. Therefore By is a (c)-basis. Given ﬁF f]((({,)) € Land U' € Ey, we write V'

Vnv, QM2 and QM3 guarantee that o ((I‘j.,’,) and ﬂg(g”)) make sensé. Then we have

(ﬁ?(([}/) )[F vy = lpw: and the two sets L' = {ﬂ?((g, F |VU’ € By} a.nd Q =
{V'IVV ¢ A,VV’ € By}
Next we verify the following identity:
F(U") JH(V') =

U") and ﬂ?(U,I make sense for U”" N U’ # 0, we have that ﬂF U"mU') is well-

Since ﬁF (
defined and there ex1sts a commutative diagram by QMS3,

/ Hy(V") p}':‘(”HnU’) ﬂy(i/’)
HWVY= gV "S" Rwrnv)y S Ry = B Y R,
Since ﬁ?((g() g((lé’/)) = lpyr, we have that p?((UU,) U s bijective. Then the following

diagram is commutative:
-1
H(V) = B(V) 4% RO >S5 s R v = B(0) 5 R nTY).  (67)
Thus ﬁF U"nU') is surjective by (6.7). For U" = U' N U",

Fi(U") oHy (V') = (af] U”)ﬁHl

H (V) PEjumy = lH.(V’) = 1y, 1y | (6.8)

Since ﬂg((g,l)) is surjective and ﬂg((g,i,)) makes sense, the inclusion map ¢ : F(U"') — F(U’)
is surjective by QM3. Hence U"” = U’. Then the identity (6.6) follows.

Lemma 6.10 Q is a (c)-basis.
Ul
Proof For an open set Vj € B}, and a map a ({’, 'BF U” E S, we have

H(V])\~ ' ‘ |
H(Vy) = UU’EB}ﬂ.U",’mU’;éV)(ﬁF([(;[;/)))) HR(UGnTY). (6.9)
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Let Hy(¥%') = (Brigy) ) (U5 0 U)

Q1) gy Vo) _ ( FU
“m (W) ﬂFl(U"nU' = (a Hn(V’)ﬂF U”) )le(Vo) L)
So o) i surjective since a2 ") makes sense for V/ € Q. By QM3, %' NV’ # 0

Hl(Vo) H(V)
and there exists a commutative diagram:

RUIAUY S Hy(Vo n V) S Hi (Vo) = AU nU") S By (Vo). (6.10)

So 7 is surjective by (6.10). Hence V% = Vo nV' and V ¢ Q. Since V' = U-V(;/, we obtain
the desired result. O

Lemma 6.11 There is a bijective map from B} to Q which preserves order C.

Proof Given a map m: B — Q:
U V', YU’ € By, if F(U') = (agy) HHV' O V) and V= V'O V.

If there exists a surjective map afl(,(v),,) then for V' N V" # § the following diagram is
commutative by QM3:

FUNYS H(V')=FU)S H' (V' nv") S HV). (6.11)
o, Fu ,)) is surjective, so is 7. Hence V' A V" = V'. On the other hand, the following
dxagra.m is also commutative: F(U') = S H(VY=FU)S HV' v S H'(V"). We
know that V/ NV" = V”. Hence V' = V". Therefore the map m is well-defined.
We define a map g : Q — Bj as follows:

7' U T =V'0V withV € Aand V' € By, and F(U') = (al ) HHV N V).

) .

Since the map ﬂF(U') is surjective, a similar argument shows that the map g is also well-
defined. Then it is clear that we have mg = 1¢, and gm = lgy. So the map m is bijective.

Given two open sets U’, U] € B} such that U’ C Uj. Since ag(([‘{/,)) is surjective, from

the commutative diagram
FUNYS HWV' nV) S HV'Y = F(U') = H(V'),

we have V' N V] = V', so m(U’) C m(U;). Therefore m is an order-preserving map. O
Now we are in the position to prove that for each F(U') € (F, p)py, there is a unique

H(V') € (H,7)g such that aH((l‘],,) =1

Choose an open set Hy(V') € (H,7)q. Since ofY) isa C7-diffeomorphism, there is

H(V") -
H(V") _

a unique H such that the set F(U’) and the set H(V') are same. Furthermore T
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FU) y-1 F(U') FUY)  _ H(V')
(aHl(V’)) HPY T = 1 follows from QM3. If Oy = 1, then Ty = 1. So
H = H' by AP2 (i). Similarly we have that for each H(V') € (H, 7)o there exists a
unique F;(U’) € (F, p)py such that ﬂg((‘;l,)) = 1. Since af{((l‘]-//,))ﬁg(%l)) =1, F = F;. Hence

for each U’ € BY% there exists a bijective map

, SO «

by : {F(UI)IVF( ) S RU’} — {H( )IVH( ) € RV’}’

with bU/(F(U/)) = H(V’) . i
Given by (F(U")) = H(V') and bu(F/(U")) = H'(V'), we get ppy) = r}’j,‘(“’.,')) by
QMa3. Hence the sets G.(U’) and G,(V') are same. Since

F Uy F(U') F(U") HWV') _ _H'(V') _H(V')

Priwry " Prwry = PRy = Ty = Ty TR (6.12)

the weak groups G,(U’) and G,(V') are same. So [GF, flBy 2 [Gy,hlg. Now the proof
of Theorem 6.9 is complete. O

Theorem B (X,®) ~ (Y, ¥) if and only if there are a (c)-basis Br of X and a (c)-basis
By of Y such that [Gr, flg, = [Gu,hlp,,, for a bijective order-preserving map m.

Proof If [GF, flp, = (G, h]B,,, then for each U € Br and Gp(U) = Gy(m(U))

F(U H(m(U F(U
pr(U)) = TH,((m((U)))), for each pF,((U)) € Gr(U).
F(U U H(m H{(m(
Let aH((m)(U)) = 1 for each F(U) € (F,p)p,. and aH(, ”)L(U)) = TH,((m )) Let Bp ( =1

for each H(m(U)) € (H,7)p,, and [3?,((75()(])) = pg%) . Since m is bijective and order-
preserving, it is easy to check that both a and 3 defined below are morphisms:

a»{aH,m ’VUEBF,VFVH} ( >BF—><H,T>BH,

H(m
B= {'BF'((U§U))]VU € BF’VH’VF/} :(H,T)By — (F,p)Bp

Obviously, we have that

af =1, and fa=1. (6.13)
So (F,p)p, = (H,7)p, in AS. Since (F,p)p, = U(X,®) and (H,7)p, = U(Y,¥), w
have (X, ®) ~ (Y, ¥) from Corollary 5.19. The other direction is clear. O

Corollary 6.12 There are uncountably many (c)-basis By of R* such that for any A # p,
[Gx, f]B, can not be bijective order-preserving to Gy, flB,. Le. there are uncountably
many inequivalent (c)-basis of R*.
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