On the Zero-One-Pole Set of a Meromorphic Function

ZHANG Zhan-liang¹, ZHU Dian-li²

1. Dept. of Math., Xijiang University, Zhaoqing 256061, Guangdong;

2. Dept. of Math., Taian Teaching College, Taian 271000

Keywords: unicity; meromorphic function.

Classification: AMS(1991) 30D35/CLC 0174.52

Document code: A Article ID: 1000-341X(2000)01-0157-02

Let $\{a_n\}, \{b_n\}$ and $\{p_n\}$ be three disjoint sequences with no finite limit points. If it is possible to construct a meromorphic function N in the plane whose zeros, one points and poles are exactly $\{a_n\}, \{b_n\}$ and $\{p_n\}$ respectively, where their multiplicities are taken into consideration, then the given triple $(\{a_n\}, \{b_n\}, \{p_n\})$ is called the zero-one-pole set (of N). In general an arbitrary triad $(\{a_n\}, \{b_n\}, \{p_n\})$ is not a zero-one-pole set of any meromorphic function. This was proved by Rubel and Yang^[6] explicitly for entire functions. Ozawa^[5] proved the following.

Theorem A Let $\{a_n\}$ and $\{b_n\}$ be two arbitrary disjoint infinite sequences with no finite limit points. Let b_1 be different from b_2 . Then one of the following three pairs

$$(\{a_n\},\{b_n\}_{n=1}^{\infty}),(\{a_n\},\{b_n\}_{n=2}^{\infty}),(\{a_n\},\{b_n\}_{n=3}^{\infty}\cup\{b_1\})$$

is not a zero-one set of any entire function.

An example in [5] shows that two pairs are really zero-one sets in Theorem A. As the first supplement Ozawa also proved that if one of $\{a_n\}$ and $\{b_n\}$ is a nonempty finite sequence then three pairs can be reduced to two pairs in Theorem A.

We proved the following

Theorem 1 Let $\{a_n\}, \{b_n\}$ and $\{p_n\}$ be three disjoint sequences with no finite limit points. Let $\{c_n\}$ and $\{d_n\}$ be two nonempty distinct subsequences of $\{b_n\}$ with

$$\sum_{c_n \neq 0} |c_n|^{-1} + \sum_{d_n \neq 0} |d_n|^{-1} < \infty.$$

Biography: ZHANG Zhan-liang (1962-), male, born in Shandong province. Currently a professor at Xijiang University.

^{*}Received date: 1996-08-27: Revised date: 1998-04-21

Then at least one of the following three triads

$$(\{a_n\},\{b_n\},\{p_n\}),(\{a_n\},\{b_n\}\setminus\{c_n\},\{p_n\}),(\{a_n\},\{b_n\}\setminus\{d_n\},\{p_n\}))$$

is not a zero-one-pole set of any meromorphic function.

Theorem 2 Let $\{a_n\}, \{b_n\}$ and $\{p_n\}$ be three disjoint sequences with no finite limit points and

$$\sum_{b_n \neq 0} |b_n|^{-1} + \sum_{p_n \neq 0} |p_n|^{-1} < \infty. \tag{1}$$

Then at least one of the following two triads

$$(\{a_n\},\{b_n\},\{p_n\}),(\{a_n\},\{b_n\}\setminus\{c_n\},\{p_n\})$$

is not a zero-one-pole set of any meromorphic function, for an arbitrary nonempty subsequence $\{c_n\}$ of $\{b_n\}$ with $\{c_n\} \neq \{b_n\}$.

Their proofs depend on the impossibility of Borel's identity.

Lemma Let $P_0, P_1, \dots, P_n(P_j \neq 0, 0 \leq j \leq n, n \geq 1)$ be entire functions satisfying $m(r, P_j) = o(r)(r \to \infty)(j = 0, \dots, n)$ and let g_1, g_2, \dots, g_n be nonconstant entire functions. Then an identity of the following form $\sum_{j=1}^n P_j e^{g_j} = P_0$ is impossible.

This had been stated in several ways (see [2], [3] and [7]). Moreover this also is an easy consequence of Lemma 1 in [4].

Remark If the condition (1) in Theorem 2 is replaced by

$$\sum_{a_n \neq 0} |a_n|^{-1} + \sum_{c_n \neq 0} |c_n|^{-1} + \sum_{p_n \neq 0} |p_n|^{-1} < \infty,$$

then the conclusion is still true.

References:

- [1] HAYMAN W. K. Meromorphic functions [M]. Oxford Clarendon Press, 1964.
- [2] NEVANLINNA R. Einige eindeutigekeissatze in der theorie der meromorphen funktionen [J]. Acta. Math., 1926, 48: 367–391.
- [3] NEVANLINNA R. Le theoreme do Picard-Borel et la theorie des fonctions meromorphes [M]. Paris, Qauther-Villars, 1929.
- [4] HIROMI G and OZAWA W. On the existence of analytic mapping between two ultrahyperelliptic surfaces [J]. Kodai Math. Sem. Rep., 1965, 17: 281–306.
- [5] OZAWA M. On the zero-one set of an entire function [J]. Kodai Math. Sem. Rep., 1977, 28: 311–316.
- [6] RUBEL L A and YANG C C. Interpolation and unqvoidable families of meromorphic functions [J]. Michigan Math. J., 1973, 20: 289-296.
- [7] YI H X and YANG C C. Unicity theory of meromorphic functions (in chinese) [M]. Science Press, 1995.