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Abstract: Let u be a Borel Probability measure on RY. ¢,t,€ R. Let H;’;‘ denote the
multifractal Hausdorff measure. We prove that, when p satisfics the so-called Federer
condition, for a closed subset £ € R", such that 'HZ"(E) > (0, there exists a compact
subset F of E with 0 < HZ'(F) < oo, ie., the finite measure subsets of multifractal
Hausdorff measure exist.
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1. Introduction

In recent years, many theoretical physicists and mathematicans have studied the so-
called multifractal theory (see {1],(2],[3]). A number of claims have been made on the
basis of the heuristics and physical intuition. Recently, Olsen [4] developed a mathemat-
ical vigorous multifractal formalism based on a natural multifractal generalization of the
centred Hausdorfl measure and the packing measure, and discussed the relations between
the multifractal dimension and the spectra function, and many properties of the multi-
fractal measure and dimension are obtained. The existence of finite measure subsets is
an important and useful property of HausdorfT measure, and it is the essential work of
Besconvitch(1952)(See [5]). In this paper, we discuss the finite measure subsets of multi-
fractal Hausdorff measure.

2. Prelimilary and Main results

Our analysis is based on the multifractal formalism introduced by Olsen in [4].

Let X be a metric space, P(X) be the family of Borel probability measure on X.

A countable family B = (B(z;,r;)); of closed balls of X is called a centred §—covering
of Eif E C U;B(z;,7;),2; € E,and 0 < r; < § for all 1.
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Let E C X,t > 0, denote the ¢t-dimensional Hausdorff measure and Hausdorff dimen-
sion of E by H*(E) and dim E(see [6] for the definitions)

We now define the multifractal Hausdorff measure HZ".

Forpe P,EC X,q,t € R, and § > 0, write

HES(E) = inf {3 (u(B(z:,7:)))2(2r:)}  (B(zi,7:)): s
a ce;tred d-covering of E}, E # 0;

HL5(0) = 0;

H‘”(E) = sup'H (E);

HLYE) = sup HL(F).
FCE

We set 0° = 1 and 07 = oo if ¢ < 0.

HL* is a metric outer measure, and it is a measure on the Borel algebra ([4]).By
proposition 1.1 of Olsen [4],we can define the multifractal Hausdorff dimension dim(E)
of E as follows: dim},(E) = sup{t: H%(E) = oo} = inf{t: HLY(E) = 0}.

It can be easily seen that dim(E) = dim,(E), and dim?, is a monotonous and o-stable
index.

For p € P(X) and a > 1 write

1) = Smewel_swe B )

Let Pr(X) = {p : Ta(p) < oo for somea > 1}. u € Pp(X) is called a Federer
measure.

Lemma 2.1 If u € Pr(R%),a > 1,then there exist constants ry,C > 0, such that

+_ w(B(z,ar))
S B <

(2.1)

for all 2 € suppy, and r < 7o.
It can be easily proved by the definition of Pp(R?).

.

Theorem 2.2 Let E be a closed subset of R, u € ’PF(Rd),'HZ*t(E) = oo, Let A > 0,
) <

there exists a compact subset F of E such that 0 < A < H%*(F) < o0.

3. Proof of Theorem 2.2

To prove Theorem 2.2, we introduce a net measure M%!

%"y which was introduced by
Olsen in [8]. For n € N, write

L+1
n—{H[2na—_n— 117127"'ld€Z}'

The family U, is the class of half-dyadic cubes of order n. For u € Uy, let

[u] = Z v,

vEUpd{u,v)=0
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where d(u,v) = inf{d(z,y) : z € u,y € v}, i.e. [u] is the union of « and its immediatly
adjacent neighbouring dyadic cubes of order n. For u € 'P(Rd),E € R%q,t € R, and
n € N ,write

Mq’tn(E) = inf{z.(p’([ui]))q(z-m)t t EC Zuhui € unnni Z n},E# 0;

M2t (0) = 0;
MEHE ) = sup ML (E).

Lemma 3.1 (Olsen([8] lemma 5.2.1) Let u € P(R%),q,t € R, andn € N.
(i) MZ?t is a regular metric outer measure, in particular hm MIHE;) = M% ‘( hm E;)

for any increasing sequence E; — E;
(ii) hm M“n( i) = MY (hm E;) for any increasing sequence E; — E. (3.1)

Lemma 3.2 (Olsen [8] lemma 5.2.2) Let u € P(R%), q,t € R, E € R? there exists a
constant C, such that

CrTIMLt < HIP < Oy MEY, (3.2)

Lemma 3.3 Let p € P(R?), q,t € R, E € R? there exists a constant C» such that

Mt (E) < CyHL(E) for 2772 < § < 2=(n+1), (3.3)

nn

It can be easily obtained from the proof of Lemma 5.2.2 in [8].

Lemma 3.4 Let p be a Federer probability measure J{E:} be a decreasing sequence of
compact subsets of R?, then for sufficent small § > 0 there exists a constant C3 such that

2tC3H“b( ].HIOIOE ) > Iml H“ 26(E) (3.4)

Proof Since p is a Federer measure, by lemma 1.1 for sufficently small §, there exists a
constant C3 > 0 such that
' p(B(z,2r))?

O S B

<Cs

for € suppp and 0 < r < §.

Suppose (B(z;,r;)); is a centred §-covering of lim;_,», E;, let V = > B%(zi,27;) (For
this section we use B°(z,r) to denote the open ball, and B(z, 7) to denote the closed ball).
Then there exists j such that E; C V. Otherwise {E; \ v} is a decreasing sequense of
non-empty compact sets, so its limit sets (lim E; \ v) # 0, contradicting with lim E; C
2 B°(zi,2r;). So we have E; C U;B(z;,2r;). Since

2'C3 1(2m:) (B2, 7)) > To5(4ms)tu( B(=i,2r0))1 > Hos(E;) > Lim HEos(E;),

3 - o0

we have 2tC3'H“ 5( lim E;) > lim ﬁzv,tza(Ei)-

Now we prove Theorem 2.2.
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Proof We prove our theorem for d = 1. For higher dimensions the proof is analogous.
Since M%*(E) = 0o, We can find an integer m such that

2t02C3A < Mz’fm(E) < oo,

where C3,C3 are the constants in Lemma 3.3 and Lemma 3.4.
We inductively define a decreasing sequence {E} of subset of E as follows:
Let E,, = E for n > m.
Suppose I C U,.
(1) TMZ  (EBanI)<2 (1)) let Enyy NI =E, NI

When using I as a covering interval in calculating ML (E), we have

ML (E, 0 T) = min{M*>  (E,nTI),27"u([1])}.

pun+1

So
MO (Buga 01) = ML (B, 0 1) < 27 ()0, (3.5)

nn

(2) T ML L(EanT) > 27" u([1]))? let Enyq N T be a subset of E, N I satisfied

M (Bnp1NT) = 275 u((1])7 ( since M2 (E.nIN[—o0,z))is finite and continuous
in z, such a subset exists) so we have

M(Bn 0 1) = min{2™" u((1))7, M{7 1 (En 0 1)} = 27 (1)),
Conbine (1),(2) we always have
Mzﬁzﬂ(EﬂH nI)= MZ',2+1(ETL NI)<27™u(I]) n>m. (3.6)
Sum (3.6) over all I € U,,, we have
MY 1(Brr) = MO (E,) n>m.
Iterate upper procedure, we have
ML (En) = ML (ER) n>m. (3.7)
For I € U,,if m < n <lthen E; C E, 1. By (3.6) we have
M (BINT) S MES L (Bagr 1) < 27 (1)), (3.8)

So
MLL(BNT) = min{MZ, (B0 1), 27" w((1))7} = MEL L (BEin D). (3.9)
Sum (3.9) for all I € U,, we have

MY (E) = MU(E) m<n<l (3.10)
By (3.7) and (3.10) we have

MEL(E) = MYY(E) = M8 (En) 1> m. (3.11)

J,m
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Let F = N2, E,. By Lemma 2.2 and (3.7)

HIH(F) < CLMEH(F) = Cy lim M35 (F)
< C1 liminf ME4(Ep) = CoMEE(Em) < 00

nn

(3.12)

On the other hand by LemItna 2.4 and Lemma 2.2")
2CsHLHF) > 2'CsH,, 5 (miny (F) 2 Jim T sy (B;) 2 Co 7 JLim M1 (Ei)

= Co MY (Bmg1) 2 C27120C,C3A = 2'C3 A (3.13)
Combine (2.12) and (2.13) we have 0 < H%*(F) < oo.
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B4 Hausdorff I E B FR M E FE

HLRY, & HE A’

(1. PEARKZES &R, da 1008725
2. PEMZRANVESBEETRLE, 430071)

B E i%uh R L Borel EREME, ¢,t € R, T HLE R Olsen!¥ & XTSI Hausdorff
WIEE, MERAT X4 p HWEER, WY HHERNE FEFE.

— 170 —



